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 VAGUE THEORY AND
 MODEL UNCERTAINTY
 IN MACROSOCIOLOGY

 Bruce Western *

 Vague macrosociological theory generates uncertainty about sta-
 tistical models. As a result, statistical inferences in macro-

 sociology-where data sets are small and collinear-may carry
 considerably more error than is indicated by the conventional

 estimation and testing methods. I describe a Bayesian ap-
 proach that propagates uncertainty about statistical models

 through to the final results. This approach is illustrated in a

 model of cross-national welfare state development and a
 pooled cross-sectional analysis of strike activity. These exam-
 ples show that classical inferences can be seriously misleading
 when vague theory weakly guides the model specification.

 These ideas are considered in relation to recent methodological
 debates in macrosociology.

 Macrosociologists are highly uncertain about their statistical models.

 This uncertainty is rooted in the distance between macrosociological

 I gratefully acknowledge Ed Amenta, David Draper, Larry Griffin,
 Adrian Raftery, Robin Tamarelli, and Sociological Methodology reviewers who
 commented on earlier drafts. I also received helpful comments from seminar
 participants at Columbia, New York University, and Princeton. An earlier ver-
 sion was presented at the meetings of the American Sociological Association,
 Los Angeles, August 1994. The pooled cross-sectional data analyzed in the
 strike example can be obtained from Statlib at http://lib.stat.cmu.edu/datasets/
 strikes. All variables except union density are available. The union density data
 were kindly supplied by Jelle Visser at the University of Amsterdam. E-mail:
 western@lydgate.princeton.edu.

 *Princeton University
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 166 WESTERN

 ideas and their representation as statistical models. The theories that

 drive quantitative macrosociology provide little guidance beyond sug-

 gesting large sets of candidate variables for regression analysis. Conse-

 quently, macrosociology is a highly inductive enterprise that engages

 the data in double duty: first to select a model, and then to estimate

 parameters. This type of uncertainty, which necessitates a data-driven

 model search, is not accommodated by conventional statistics. When

 the same data are used for model selection and parameter estimation,
 the usual p-values and standard errors can be dramatically biased in

 the direction of positive findings. This bias is particularly acute in the

 macrosociological setting where samples are small and collinear.

 These over-optimistic conclusions result from unreported un-

 certainty about the model specification. Bayesian statistics provides

 a way of accounting for model uncertainty. In the Bayesian ap-

 proach, results are averaged across models, weighted by the support

 each model receives from the data and prior belief (Leamer 1978).

 To illustrate this idea, I present analyses of welfare state develop-

 ment and strike activity in 18 industrialized democracies. The wel-

 fare state analysis exemplifies the familiar problem of not knowing

 what independent variables to include in a regression equation. Pool-

 ing results from different models in this application revises conclu-

 sions in a conservative direction. However, findings are not always

 diluted by allowing for model uncertainty. In the strike analysis,

 theory does not say whether to fit a normal or fat-tailed, robust,

 distribution to the data. The data favor the robust specification and

 prior uncertainity about the strike model is reduced by Bayesian

 inference.

 By critically examining quantitative macrosociology, this pa-

 per adds to recent debates about the value of statistics for studying

 large-scale social processes. The critics argue that nonprobabilistic

 methods can remedy the shortcomings of quantitative applications
 (Ragin 1987; Abbott 1988; Griffin 1993). I add to the critique, argu-

 ing that most substantive conclusions in quantitative macrosociology

 are not justified by the reported statistical analyses. Unlike earlier

 discussions, I use statistical ideas to resolve a distinctive methodologi-

 cal problem of macrosociology.

 This paper also contributes to a line of research which claims

 that Bayesian inference is useful for studying comparative-historical

 questions. Previous work investigated the utility of Bayesian subjec-
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 VAGUE THEORY AND MODEL UNCERTAINTY 167

 tive probability and prior information (Berk, Western, and Weiss

 1995; Western and Jackman 1994). These papers assumed perfect

 knowledge about the model specification. The current task is to

 explore the consequences of relaxing that assumption.

 1. VAGUE THEORY IN MACROSOCIOLOGY

 Quantitative macrosociology typically proceeds by appealing to a

 small number of theoretical perspectives to explain a set of observa-

 tions (Ragin 1987, ch. 4). Regression models provide a natural frame-

 work for this research. Three decisions arise in choosing a regression

 model: (1) the selection of variables, (2) the choice of functional

 forms, and (3) the stochastic specification.

 Macrosociological theory plays its largest role in variable selec-

 tion. I distinguish two situations: (1) where theory is vague about

 control variables (Leamer 1983), and (2) where theory is vague

 about variables of key interest. To foreshadow the first application
 below, say a researcher is interested in the impact of social demo-
 cratic government and economic development on the welfare state

 (e.g., Korpi 1989; Wilensky 1975). Other variables like the age of the
 population, the unemployment rate, or the labor force participation
 rate might also be considered because these could influence the de-

 mand for social spending (Pampel and Williamson 1989), and they

 may covary with the variables of interest. Theory is often vague

 about these control variables in the sense that the researcher is un-

 sure precisely which controls to include. For example, Nielsen's

 (1994) analysis of income inequality divides the independent vari-

 ables into a "core model" that is included in every specification and

 various subsets of "additional variables." Similarly, Boswell and

 Dixon's (1993) study of political violence distinguishes variables rep-

 resenting "the main elements of the theory" and "corollary factors"

 on the one hand, and a variety of "ancillary terms to better control

 and specify the relationships" on the other. Theory is too vague in

 both cases to say which control variables should definitely be in-

 cluded to accurately estimate the effects of interest.

 Theories can also be vague about these effects of interest. Theo-

 ries are generally stated as stylized empirical associations that could be

 operationally described by a large number of variables. As a result, as

 Ragin (1987, p. 67) observes, "variable-centered" comparative sociol-
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 168 WESTERN

 ogy is dominated by issues of operation, measurement, and model

 specification. In the welfare state example above, the social democ-

 racy variable represents a theory that says welfare state development

 depends on the power resources of working-class representatives. The

 theory is vague about which power resources are important. Some

 researchers prefer social democratic government, others like union

 organization (Esping-Andersen and van Kersbergen 1992 review the

 literature). Vague theory generating model uncertainty in this case is

 not a multiple indicator problem. With multiple indicators, structural

 variables are known with certainty to be in the model, but they are

 measured with error. With model uncertainty, researchers are unsure

 about which variables to include. Although measurement error is

 commonly and perilously ignored, uncertainty about model specifica-

 tion has distinct implications. In the welfare state example, parties and

 unions are not indicators of an unobserved construct. The inclusion of

 one or both variables describes different empirical processes that are

 not known with certainty.

 Additionally, theory is often silent about the functional and

 stochastic parts of a model. Assuming a normal distribution for the

 dependent variable involves an empirical claim about how data are dis-

 tributed, but this assumption is determined by the ease of least squares

 estimation rather than any substantive understanding (see Freedman

 1985, p. 349). By simply providing expectations about the direction of

 associations, macrosociological theory is often quiet about functional

 form. The relationship between social spending and working-class

 power resources is often written as linear, but this is adopted out of
 convenience. Departures from linearity, where specified, are often

 used for data-analytic reasons, to obtain symmetric residuals or to pull

 in outliers. (An important exception are theories that specify non-

 monotonic relationships; see for example Kuznets 1955).
 In short, theory is vague in the sense of failing to generate

 models that are unambiguously preferred to alternative specifica-

 tions. Instead of picking out points in the space of possible models,
 macrosociological theory delineates large and fuzzy regions.

 2. WEAK DATA IN MACROSOCIOLOGY

 How do researchers choose among the models that theory might
 suggest? Model choice is empirically guided by a battery of tools
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 VAGUE THEORY AND MODEL UNCERTAINTY 169

 including transformations and recodes, goodness-of-fit statistics, step-

 wise regression, and specification tests. Commonly, significant coeffi-

 cients with hypothesized signs are retained, while others are dis-

 carded or replaced by alternatives.

 When data sets are small and collinear as in macrosociology

 (Western and Jackman 1994), regression estimates can be very unsta-

 ble in such a data analysis. Partly this is due to the large variance of

 coefficients estimated with small samples. Instability in coefficients is

 also aggravated by collinearity. With collinearity, estimates for one

 variable are sensitive to the other variables in the model. The instabil-

 ity of parameter estimates in an empirical model search is well under-

 stood by the critics who skeptically claim that data sufficiently tor-

 tured will confess the result desired by the data analyst. Similar

 intuitions are conveyed in warnings against "capitalizing on chance"

 or pejoratives like "number crunching," "data mining," and "data

 dredging" (Leamer 1983).

 As the intuitions suggest, vague theory and weak data are a

 potent combination. Freedman's (1983) Monte Carlo study is a strik-

 ing illustration. Freedman conducted a regression analysis on a data

 set consisting of 100 observations and 50 randomly generated predic-

 tor variables, all independent of the outcome. The true value of each

 coefficient was thus known to be 0. The analysis began by screening

 out independent variables that were not significant at the .25 level.

 After screening, 15 independent variables remained, of which 8 were

 significant at the .25 level, and 6 at the .05 level. The R2 was a

 substantively tolerable .36, significant according to an F-test at the

 .001 level. Thus in a regression of "noise on noise," strong evidence

 for structural relationships in the data was found with the help of a

 screening procedure. Analytical results showed that calculated t-

 statistics of 1.96 obtained in the second regression run had a true

 probability level of 40 percent, in contrast to their nominal level of 5

 percent (Freedman 1983, p. 154). Other studies show that data-

 driven model searches yield inflated R2s and F-statistics while the

 lengths of confidence intervals are downwardly biased (Freedman,
 Navidi, and Peters 1988; Hurvich and Tsai 1990).

 These biases are severe precisely in the situation that mac-

 rosociologists encounter-when the number of candidate indepen-

 dent variables is large in relation to the number of cases (Freedman

 et al. 1988). Collinearity compounds the problem by contributing to
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 170 WESTERN

 the sensitivity of regression estimates. Thus empirically guided

 model searches resulting from vague theory may be ubiquitous in

 sociology, but the pitfalls for statistical inference are especially se-
 vere for macrosociologists because of the weak data they analyze.

 These problems are not news. To guard against overfitting,
 macrosociologists sometimes use statistics like the adjusted R2 that

 penalize large models. Less commonly, sensitivity analyses (Leamer

 1983) are used to investigate estimates from a range of models. Each

 strategy addresses a distinct problem. Fit statistics with penalties for

 parameters provide a way of finding a "'best" model that is not simply

 the largest. Although one model among several might be favored by

 an adjusted R2, all the concerns about uncalibrated uncertainty about

 the specification remain. Classical inference for the "best" model will

 still be too optimistic. Sensitivity analysis is an informal way of incor-

 porating model uncertainty. Consistent results across models indicate

 that the data support one substantive conclusion, regardless of model

 choice. But what if the results are inconsistent across models'? Which

 estimates, if any, should be believed? The Bayesian approach to

 model uncertainty provides a method for resolving this question.

 3. A BAYESIAN APPROACH TO MODEL UNCERTAINTY

 The problem with conventional statistics is that only uncertainty of a

 very special type is permitted. Models are assumed to be true up to

 unknown parameters. This means that all features of the model are

 known with certainty, except the numbers to slot in for, say, the

 coefficients of a regression. This idea contrasts sharply with Ragin's

 (1987, p. 67) observation, cited above, that quantitative macro-
 sociology is dominated by discussions of model specification. If

 Ragin is right, then conventional statistics-which admit parametric
 and not model uncertainty-are unsuitable for the job of inference

 in macrosociology where the effects of vague theory are likely to be
 large.

 Overconfidence in statistical inference resulting from data min-

 ing can be understood in this context. Conventional statistical tests
 only have their probability interpretation conditional on a true model.
 When researchers are uncertain about whether their models are true,
 statistical inferences are too optimistic, failing to consider all the
 sources of uncertainty on which the inferences should be based.
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 VAGUE THEORY AND MODEL UNCERTAINTY 171

 Bayesian statistics provides a useful vocabulary for discuss-

 ing statistical inference when theories do not lead to a uniquely

 preferred model. The Bayesian goal is to describe an unknown

 quantity, such as a regression coefficient, ,3, with a probability

 distribution called a posterior distribution. The posterior distribu-

 tion results from an application of Bayes's rule that combines a

 probability distribution for the data (called a likelihood) with a

 probability distribution for nonsample information (called a prior

 distribution):

 p(,31data) x p(datal,3) x p(f3),

 or, in words, the posterior distribution is proportional to the likeli-

 hood times the prior. The proportionality sign (ci) here indicates that

 the posterior must be standardized to be a proper probability distribu-

 tion. If sample data dominate the prior information, the Bayesian

 results for regression coefficients will often be close or identical to

 the results obtained with maximum likelihood estimation. In a linear

 regression with normal errors and known error variance, ordinary

 least squares (OLS) results are the maximum likelihood estimates

 (MLEs). For diffuse priors, the Bayesian results are close to OLS in

 the sense that the posterior distribution of coefficients is similar to a

 normal distribution with means and variances close to the OLS coeffi-

 cients and squared standard errors.

 If vague theory generates several different models, the poste-

 rior distribution for a coefficient is simply the weighted average of

 the posterior distributions for each of the models. The weights are

 given by the posterior probabilities of the models (Leamer 1978, p.

 117). Consider three models sharing a predictor with the regression

 coefficient f8. The other sets of independent variables in the mod-

 els might be overlapping, disjoint, or nested. If the posterior proba-

 bilities for the models are written as Pl, P2, and p3, and the poste-

 rior distributions of , under each model are pJ(,31data), P2(131data),
 and p3(,31data), then the unconditional posterior distribution for ,(
 that takes account of theoretical vagueness generating the different

 models is

 p(,81data) = p1p,(131data) + p2p2(,3ldata) + p3p3(,3ldata). (1)

 Because it is based on a mixture of results from the three models, this

 final probability distribution, p(,31data), is called the Bayesian
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 172 WESTERN

 model-mixing posterior (Raftery 1993). If only one model has high

 probability, vague theory poses few problems. Estimates from other

 models receive little weight and do not influence the final conclu-

 sions much. If inferences are based on only one model, M, but others

 have high probability and give quite different results, the final conclu-

 sion based only on M will be misleading.

 Note that the quantity of interest, ,(3, should have the same

 meaning across models. For instance, if ,3 is a logit coefficient in one

 model but a probit coefficient in another, it makes little sense to pool

 results because:8 is measured on two different scales. In the example

 of equation (1), in each model 3 expresses the change in the depen-
 dent variable for a unit change in the independent variable, all rele-

 vant factors held constant. The model-mixing posterior quantifies

 uncertainty about these "relevant factors."

 The unusual ingredient for inference is the posterior model
 probability. Again using Bayes's rule:

 Posterior model probability xc Model likelihood x Model prior.

 Posterior model probabilities are discussed in greater detail below,

 but at this point intuitions about the posterior model probabilities

 can be sharpened by considering diffuse prior information that al-

 lows the sample data to decisively shape the final results. In this

 situation, the posterior model probability is approximately a func-
 tion of the likelihood evaluated at the MLEs, sample size, and the

 number of parameters. The posterior model probability for linear
 regression then is approximately a function of R2 and the degrees of
 freedom.

 Note that the Bayesian critique goes beyond the well-
 rehearsed warnings about data mining. Overfitting is only a symp-

 tom, and not a cause, of excessively optimistic statistical infer-
 ences. The root cause is unreported uncertainty about the model
 specification. Imagine a researcher who sits down at the computer,
 prepared for a long day of data analysis. To her surprise, the
 estimates come out "right" (conform to her prior expectations)
 with the first pass through the data. Model uncertainty for the
 Bayesian remains unaccounted for in this situation. When theory
 only vaguely guides the choice of model, prior uncertainty about
 the model is not reflected in classical inferences, even in the ab-
 sence of data mining.
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 VAGUE THEORY AND MODEL UNCERTAINTY 173

 4. STATISTICAL AND COMPUTATIONAL DETAILS

 The problem of model uncertainty reduces to making inferences
 about an unknown quantity such as a (possibly vector-valued) pa-
 rameter or future observation, A, given sample information, y, and

 uncertainty about a set of model assumptions, M (Draper 1995).
 For a given dependent variable, regression assumptions contain

 information about the independent variables, functional form, and

 stochastics. This information implies a corresponding set of pa-
 rameters, 6M. A statistical model is thus defined by (M, OM), denot-
 ing some assumptions and their corresponding parameters. The

 subscript M indicates the dependence of the parameters on the

 model assumptions. (I omit the subscript when its reference is
 obvious.)

 To obtain an inference about A that depends on the data and

 not on one particular model, we average inferences about A across

 models. Here, 0 is treated as a nuisance parameter and is integrated

 out. The posterior, p(Aly), is the weighted average of the posteriors
 under each model, p(Aly, M), where the weights are given by the
 posterior probabilities, p(Mly). For a discrete set of m models, inte-
 grating over the model space in equation (2) simplifies to:

 m
 p(aly) = , fp(amly Mi, Mi)p(M OiplMy)di d

 i=l

 m

 = > p(Mj|y )fp(A|y, Mi, Gi)p(GilMi, y)dGi
 i=1

 = > p(Miy )p(aly, Mi).

 The posterior model probabilities, pi = p(Mily), the model-specific
 posterior means, di = E(Aily, Mi), and their variances, Vi = V(Aily,
 Mi), can be used to obtain expressions for the model-mixing means
 and variances (Leamer 1978, p. 118):

 m

 E(Aly)d= > Pidi (2)
 i=l

 and
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 m m

 V(A|y) > piVi + i( d)2. (3)

 Equation (3) suggests a "model uncertainty audit" in which the

 posterior variance can be divided into terms expressing uncertainty

 within models and uncertainty across models (Draper 1995). Even if

 ,a is estimated precisely under each model, the variance of the
 model-mixing posterior will be large if the estimates are widely

 dispersed.

 The posterior probability of the model assumptions, p(Mily),
 is closely related to the Bayes factor, B, a statistic used in Bayesian

 hypothesis testing (Kass and Raftery 1995). The Bayes factor mea-

 sures the evidence in favor of one model over another provided by

 the sample data. Comparing two competing models, Ml and M(, the
 Bayes factor works as a multiplier transforming prior into posterior
 odds:

 p(M1Iy) -IT( MI)
 = B10x

 P(MOY) IT(M()

 where 1r(Mi) is the prior model probability of model i (i = 0, 1). The
 Bayes factor is the ratio of the model, or integrated, likelihoods,

 p(yIM1)
 10p(y Mn)'

 where

 P(Y|MI) p J(y I 01 Ml. iT(OI- IMI.)dOj.) (4)

 1-r(jIMi) is the prior density of the parameters, and p(yJI0, Mi) is the
 density of the data, equivalent to the likelihood for 0*. If B1() = 1, both
 models are equally likely, while the data favor M1 over M( if B1( > 1.
 Notice also that if two models are equally likely a priori, ir(M1)/
 7r(MO) = 1, the ratio of the posterior probabilities of the models is
 given by the Bayes factor.

 For a comparison of m + 1 models, the Bayes factors

 B1, . ., Bmo can be used to obtain the posterior probabilities:

 p(M IY) = a inBr0
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 VAGUE THEORY AND MODEL UNCERTAINTY 175

 The prior odds of Mi against MO are given by ai = -r(Mi)/-r(MO). Set-
 ting ai = 1 (i = 1, . . ., m) corresponds to the judgment that no
 model is a priori more likely than any other.

 Finding Bayes factors and the posterior model probabilities

 from equation (4) thus involves specifying priors, -iT(0i1Mi), for the
 parameters, evaluating the likelihood, p(yI i, Mi), and integrating the
 product of the likelihood and the prior. Prior information-especially

 from qualitative historical studies-will often be available for many

 macrosociological problems, so this seems an advantage of the

 Bayesian approach in this area (Western and Jackman 1994). Owing to

 their subjectivity, prior distributions will vary across researchers, so it

 is useful to consider priors which are less subjective in the sense that

 sample data are allowed to dominate the final results (Leamer 1978, p.

 111). Such distributions reflect vague or diffuse prior information

 about the parameters. The following applications make use of these

 diffuse priors.

 A simple approximation for the Bayes factor is based on the

 Bayesian Information Criterion (BIC) (Raftery 1995). The BIC for

 model M1, denoted BIC1, is an approximation to 2logB1O, where B1o is
 the Bayes factor for comparing M1 with a baseline model Mo. With a
 proper prior equivalent to a single typical observation, the BIC for a

 linear regression model, Mk, is approximately equal to

 BICk = nlog(1 - Rk) + pklogn, (5)

 where R2 is the R2 for Mk and Pk is the number of regression coeffi-
 cients, excluding the intercept. The baseline model for comparison is

 the null model that includes only the intercept.

 For more complicated problems, approximate or numerical

 methods are often needed for the integration in equation (4) (see

 Tanner 1992, ch. 6). The Laplace approximation provides an asymp-

 totic estimator based on the assumption that the posterior density,

 proportional to p(yl0i, Mi)-r(i |Mi), is unimodal and that its loga-
 rithm is approximately quadratic. Assuming the sample data domi-

 nate the prior, so the posterior mode for the parameters is roughly

 equal to the MLEs, the Laplace approximation can be adapted as

 follows:

 Ii = (yli9, M)iT(6i lMi)dOi (7T)'21'Si1112L(y1 ^i,Mi)-,(^i1Mi),
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 176 WESTERN

 where pi is the dimensionality of O., O is the MLE of Oi, S is its
 estimated covariance matrix and Lj L(y O., Mi) is the maximized

 value of the likelihood. As sample size grows, the influence of para-

 metric prior information shrinks, and the only nonstandard calcula-

 tions involve taking the determinant of the covariance matrix and

 evaluating the likelihood:

 Ii = (2 7)P'| EI I I (6)

 The accuracy of this approximation depends in part on how S is
 calculated. Where the covariance matrix is based on the observed

 Fisher information, the relative error of I is of order n-1. If the

 expected Fisher information is used, as is common in software for

 generalized linear models, the error is of order n-1/2 (Kass and Raf-

 tery 1995).

 For nested hypotheses in regression, Raftery (1993) improves

 the accuracy of I by placing a proper but diffuse prior on the parame-

 ters, and approximating the posterior mode with a single Newton

 step from 0. This yields

 2logB,() A + (El - Eo), (7)

 where A = 2[L1 - Lo] is the usual log likelihood ratio statistic on (p,
 - po) degrees of freedom, and

 Ei= 2A(6i) +
 1'(6)T(F, + G 1{2 - Fi(Fi + Gi)-1} Al;(i)-
 loglFi + GII + pilog(2i7T),

 where the prior variance V(OjjMi) = Wi - G. 1, Fi = S1, A(06) is the log
 of the prior density 17-(OiMi), and A,'(Oi) is the pi-vector of derivatives
 of Ai(Oi) with respect to Oi. The prior distribution of the regression
 parameters specifies that in standard form they are a priori indepen-
 dent and normally distributed with mean zero and variance 4. The
 prior variance calibrates the influence of prior information on the
 posterior. In the following application, 1, yielding posterior
 model probabilities close to those obtained from the approximation
 in equation (5). Similar prior specifications with 1 < f < 5 provide
 similar posterior inferences. Raftery (1993) discusses prior distribu-
 tions for equation (7). Software applying (7) to generalized linear
 models is available in the S-Plus function, glib, which can be ob-
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 VAGUE THEORY AND MODEL UNCERTAINTY 177

 tained by sending the e-mail message "send glib from S" to
 statlib@stat. cmu. edu.

 Bayesians have variously described the tentative and provi-

 sional character of model assumptions as "specification uncertainty"
 (Leamer 1983), " structural uncertainty" (Draper 1995), and "model
 uncertainty" (Raftery 1995). Leamer (1978, ch. 4) provides a seminal
 discussion. Draper's (1995) more general treatment covers some re-
 cent developments in Bayesian computations (see also Kass and Raf-

 tery 1995). Background material for these sources can be found in

 Lee (1989, pp. 124-28).

 5. EXAMPLES

 5.1. Welfare States in 18 OECD Countries

 A simple analysis of welfare state data illustrates inference under

 model uncertainty. I examine covariates of decommodification in a

 large group of industrialized democracies using cross-sectional data

 for 1980. Decommodification, measured by Esping-Andersen (1990,
 pp. 49-54), refers to the extent to which citizens' livelihoods are
 separated from their position in the labor market. Although this
 cross-sectional design cannot tell us for sure how decommodification

 would change given changes in the independent variables, data of
 this kind are common in this research (Esping-Andersen and van

 Kersbergen 1992, p. 190). Because the decommodification variable
 measures institutional characteristics of the welfare state, it also
 shows greater cross-sectional than longitudinal variation. Conse-
 quently, the welfare state theories make stronger predictions about
 comparative differences than changes over time.

 This analysis focuses on the impact of social democratic gov-
 ernment and per capita gross domestic product (GDP) on the devel-
 opment on welfare state institutions. The impact of left party (social
 democratic) government was mentioned above in the discussion of
 vague theory. Per capita GDP measures the wealth of a country. In
 the development theory of the welfare state, social spending is high
 in wealthy countries because more funds are available for redistribu-
 tion, and economic development summarizes the "overall industrial
 maturation and social modernization of a country" (Esping-Ander-
 sen 1990, p. 112). Other variables-the size of the aged population,
 unemployment, and labor force participation-must be controlled
 for in order to accurately gauge the effects of theoretical interest.
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 TABLE 1

 Data for Regression Analysis of Welfare State Development in 18 OECD

 Countries, 1980

 (1) (2) (3) (4) (5) (6)

 Australia 13.0 1.7 9.6 4.1 10.1 70.2

 Austria 31.1 7.6 15.4 1.5 10.3 64.6

 Belgium 32.4 1.6 14.4 4.5 11.8 63.0

 Canada 22.0 .0 9.5 6.7 10.6 71.8

 Denmark 38.1 5.3 14.4 4.2 13.0 80.3

 Finland 29.2 3.8 12.0 3.6 10.4 76.4
 France 27.5 1.0 13.9 4.0 12.1 68.1

 Germany 27.7 5.5 15.5 2.5 13.3 68.5

 Ireland 23.3 .4 10.7 6.9 5.2 62.3

 Italy 24.1 .7 12.9 6.4 6.9 60.8

 Japan 27.1 .0 9.0 1.4 8.9 71.8

 Netherlands 32.4 1.3 11.5 4.3 11.9 57.7

 New Zealand 17.1 1.7 9.7 .7 7.4 65.6

 Norway 38.3 5.3 14.8 1.6 14.0 75.3

 Sweden 39.1 6.5 16.1 2.0 14.8 81.0

 Switzerland 29.8 1.5 13.7 .4 15.9 74.4

 United Kingdom 23.4 6.3 14.9 3.7 9.3 58.2
 United States 13.8 .0 11.3 6.2 11.4 71.1

 Note: Column headings are as follows: (1) Esping-Andersen's decommodification
 score, 1990; (2) The cabinet share of labor and social democratic parties from 1965-1980
 (Cameron 1984); (3) percent of population aged over 65, 1980 (Organisation for Economic

 Cooperation and Development [OECD] 1987); (4) average unemployment rate, 1971-
 1980 (OECD 1990); (5) per capita GDP (US$1,000s), 1980 (OECD 1988, 1990); (6) total
 labor force as a percentage of the population aged 15 to 64 (OECD 1987).

 Here, the familiar distinction is drawn between predictors of inter-
 est and a large and uncertain set of controls. Data are collected for
 a group of 18 OECD countries (Table 1). Lacking a natural metric,
 the decommodification and left cabinet variables are standardized
 before regression analysis.

 Diagnostics reveal no clear departures from the standard lin-
 ear model assumptions, so the predictors are written with linear
 effects and the errors are assumed to be normal. This part of the
 model is not subject to much uncertainty.

 How should prior probabilities for the models be chosen? Fol-
 lowing the common strategy, I first include the GDP and left cabinet
 variables on their own. The model is then augmented by various
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 combinations of the controls. This strategy captures how real data

 analyses often proceed. With uncertainty about the control vari-

 ables, no particular combination is preferred over any other and the
 models are treated as equally likely a priori. Strong interest in the

 left cabinet and GDP variables is formalized by a prior that gives

 zero probability to the possibility that they have no effect. This prior

 also ensures that the resulting posterior is smooth. Uncertainty about

 which variables to control is described by a prior belief that the aged

 population, unemployment, and labor force participation variables

 may not belong in the regression. Some prior probability is thus

 placed at 0 for the control variables.

 Conclusions are conditional on this prior. Readers who are not
 convinced in advance that GDP and left cabinet variables have an

 effect should, rightly, find the conclusions implausible. Alternative

 priors on the model space could yield substantively different results.

 Examination of all possible subsets of predictors, for example, repre-
 sents a more agnostic prior. A wider class of models is entertained

 and at least some prior probability is concentrated at zero for all

 coefficients. Estimation with this type of prior is discussed by Raf-

 tery, Madigan, and Hoeting (1993).

 Table 2 presents the regressions. Moderately strong results for
 the left cabinet and GDP effects are found in models 1, 2, 3, and 5.

 Despite the small sample, both coefficients are at least 1.5 times their

 standard errors in these specifications. A standard deviation change

 in the left cabinet variable (about three years of social democratic

 government) is associated with a .4 of a standard deviation increase

 in the decommodification score-roughly the difference in welfare

 state development between the United Kingdom and Germany. A

 $2,500 increase in per capita GDP yields a similar effect. Estimates
 in these models are substantively large and robust to the inclusion of

 the unemployment and labor force participation effects. Adding the

 aged population variable shrinks the coefficients of interest. (Left
 cabinet and GDP correlate with aged population at .8 and .6). In the
 models with aged population, the left cabinet effect decreases by
 three-quarters or more. The GDP effect is more stable, but posteri-

 ors under models 7 and 8 are essentially centered over 0. On balance,

 both effects are sensitive to the specification, but they retain their
 positive signs and are estimated with small standard errors in several
 of the simpler models.
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 TABLE 2

 Regression Results from Analysis of the Welfare State Data

 Possible Models Bayes
 Independent Mixture

 Variables 1 2 3 4 5 6 7 8 Posterior

 Intercept -1.66 -1.71 -1.93 -3.40 -2.01 -3.33 -5.55 -5.56 -2.67

 (.83) (1.11) (2.02) (1.61) (2.67) (1.68) (3.13) (3.24) (2.12)

 Left cabinet .39 .39 .39 .11 .39 .06 .02 -.05 .26

 (.21) (.23) (.21) (.30) (.24) (.35) (.32) (.38 ) (.30)
 GDP per capita .15 .15 .14 .10 .15 .09 .04 .02 .12

 (.07) (.08) (.09) (.08) (.10) (.09) (.11) (.12 ) (.10)
 Unemployment - .01 - - .01 - .04 - - .05 - .02

 (.11) ( .12) (.12) (.12) (.12, .81)
 Participation rate (x 10-2) - - .52 - .54 - 2.97 3.11 1.82

 (3.44) (3.58) (3.70) (3.84) (3.68, .78)
 Aged population - - - .18 - .20 .24 .26 .20

 (.14) (.16) (.16) (.18) (.15, .59)

 R2 .45 .45 .45 .50 .45 .51 .53 .53 -

 Adjusted R2 .37 .33 .33 .40 .28 .36 .38 .34 -

 Posterior probability (5)a .39 .09 .09 .24 .02 .06 .09 .02 -

 Posterior probability (7)b .38 .(9 .09 .26 .02 .06 .08 .02 -

 aModel probabilities estimated from equation (5).

 bModel probabilities estimated from equation (7).

 Note: Standard errors for models 1 through 8 are in parentheses. Expectations and standard deviations of the Bayes mixture
 posterior are given for the intercept, left cabinet, and GDP effects. Coefficient estimates for the control variables are the posterior
 expectations, given that the coefficient is not zero. Numbers in parentheses for these coefficients are the posterior standard deviation given

 that the coefficient is not zero, and the posterior probability that the coefficient is zero.
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 The Bayesian model-mixing posterior is based on model proba-

 bilities estimated with equations 5 and 7. Although the two equations

 specify diffuse priors somewhat differently, results are similar. Unlike

 R2, the posterior model probabilities penalize large models. The mix-
 ture posterior thus gives little weight to models 7 and 8, the two with

 the highest R2s. Compare adjusted R2s that also impose penalties for

 parameters. These statistics barely distinguish the simple model 1

 from highly parameterized models like 4, 6, and 7. Consistent with its

 goodness-of-fit and parsimony, more than a third of the posterior

 probability is given to model 1. Model 4, which featured weak GDP

 and left cabinet effects, might be discounted in a conventional analysis

 but is allocated a quarter of the posterior probability.

 For the mixture posterior, the variances of the left cabinet and

 GDP effects are larger than several of the OLS results. The posterior

 mean for the left cabinet effect is a compromise between the strong-

 est and weakest results. The sign of the coefficient is uncertain, as a

 90 percent confidence interval, [-.24, .74], overlaps 0 by a large
 margin. Similarly, the posterior mean for the GDP effect is 20 per-

 cent smaller than the strongest results and nearly equal to its stan-

 dard error. A 90 percent confidence interval, [-.04, .28], also in-
 cludes 0. Strong conclusions about the sign of the coefficients are

 thus unavailable once model uncertainty is taken into account. Reli-

 ance on any of the results from models 1, 2, 3, or 5 would signficantly

 understate uncertainty about the model specification.

 It may be tempting to interpret the model-mixing posteriors of

 the control variables by looking at their means and standard errors,

 but inference should proceed carefully here because these quantities

 are poor summaries of the posterior distributions. Posteriors for the

 left cabinet and GDP coefficients are smooth, being mixtures of

 normal distributions. In the case of the age, unemployment, and

 labor force participation effects, however, the distributions are mix-

 tures of normals and a probability mass placed at 0. The posteriors

 for the control variables have a spike at 0 representing the mixture of

 certain and uncertain prior knowledge about these coefficients that is
 implied by the modeling strategy. To obtain model-mixing results for

 the controls (or posterior marginal distributions for any of the coeffi-

 cients), posteriors are simulated by weighted sampling from multi-
 variate normal distributions with means and covariances given by the

 OLS results for models 1 to 8. Sample weights equal the posterior
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 FIGURE 1. Histograms from the simulated marginal posteriors of the age, unemployment

 coefficients, and labor force participation coefficients.

 model probabilities. Simulated coefficients for a control variable

 were set to 0 in models which omitted that variable. Table 2 summa-

 rizes these simulated posterior distributions with three numbers: the

 expectation and standard deviation of the nonzero part of posterior

 distribution, and the posterior probability that the coefficient equals

 zero. These results illustrate the modest support in the data for the

 age coefficient. While half of the prior probability was placed at zero

 for the age effect, the data shift an additional 10 percent, giving a 60

 percent posterior probability of a zero age coefficient. Correspond-

 ing numbers are much larger for the other controls. The irregular

 shape of the distributions of the control coefficients is indicated in

 Figure 1, which shows histograms of samples drawn from the mixture
 posterior.

 5.2. Strikes in the Postwar Period

 The second application reports estimates from several models of

 strike activity. This analysis of data from 18 OECD countries for the

 period 1951-1985 makes use of a pooled cross-sectional design that is

 becoming increasingly common in quantitative comparative work
 (Esping-Andersen and van Kersbergen 1992, p. 190). Strike activity

 is defined as the annual number of days lost per 1000 workers

 through industrial disputes (see Hibbs 1976). Strike volume is writ-
 ten as a linear function of economic and institutional variables. The

 economic variables include unemployment and inflation. The institu-

 tional variables consist of union density, left party parliamentary

This content downloaded from 160.39.33.163 on Sat, 24 Aug 2019 15:42:59 UTC
All use subject to https://about.jstor.org/terms



 VAGUE THEORY AND MODEL UNCERTAINTY 183

 TABLE 3

 Summary of Strike Volume Data, 18 OECD countries 1951-1985 (N = 625)

 Average

 Strike Standard

 Countries Volume Deviation Minimum Maximum

 Australia 387 247 109 1252

 Austria 26 48 0 277

 Belgiuma 247 260 25 1453

 Canada 750 962 28 5918

 Denmark 195 448 2 2001

 Finland 451 967 11 5568

 France 383 1159 41 7000

 Germany 44 64 1 260

 Ireland 547 399 70 1752

 Italy 998 593 257 2875

 Japan 174 191 6 1061

 Netherlands 26 35 0 142

 New Zealand 268 412 29 2462

 Norway 86 171 1 946

 Sweden 74 199 0 1150

 Switzerland 4 8 0 35

 United Kingdom 326 316 76 1278
 United States 448 274 73 1236

 a1950-1980
 Note: Standard deviations for each country are calculated for each 1951-1985

 time series. Data sources are described in Western (1993).

 representation, and a time-invariant measure of union centralization.

 An intercept for each country captures differences in the average na-

 tional level of strike activity. For simplicity, I assume this list of indepen-

 dent variables is known with certainty, although the following analysis

 could be expanded to include various subsets of predictors. This as-

 sumption has some realism given a consensus about the important

 predictors of strike activity (e.g., Hibbs 1976; Korpi and Shalev 1980).

 How should randomness in the model be specified? Errors for
 data with this structure are often treated as autocorrelated and

 heteroscedastic. Diagnostics show little serial correlation but descrip-

 tive statistics in Table 3 indicate that countries with above average

 strike volume also have high variance. Cross-national variability in

 the volatility of the strike series can be stabilized with a log transfor-

 mation. The log transformation also reduces skewness in the data. To
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 remove zeros, I add one to the strike volume variable before apply-

 ing the transformation. If Sij denotes annual log strike volume in the
 jth country for year i (i = 1, . . .I, ), and covariate information is
 collected in the vector xij, expected log strike volume can be written
 as a linear function:

 E(S,1j) -ij = aj + X;,8.

 The logged strike variable could be treated as multivariate normal

 with different means for each of the 18 OECD countries in the sample:

 Using equation (6), posterior model probabilities can be calculated

 with the MLEs, their estimated covariance matrix, and the likeli-

 hood evaluated at its maximum. The OLS estimates are ML with this

 specification. The likelihood of a typical observation is given by the

 usual normal density

 Lj(aj,o2,831Sij) = (2r-cr2)-12exp [ i i

 and the maximized likelihood equals the product of the likelihood

 values at the MLEs over all observations.

 The log-normal specification may be unrealistic because strike

 series have large spikes. For example, French strike volume in 1968,

 or Italian in 1969, far exceeded the average level of industrial disputa-

 tion in those countries. If extreme values are more common in the

 strike data than under the normal model, a fat-tailed distribution

 such as the t, (on v degrees of freedom) may provide a better specifi-
 cation (Lange, Little, and Taylor 1989). The t. model is a robust
 redescending M-estimator of the type recently recommended to com-

 parative sociologists (Dietz, Frey, and Kaloff 1987).The t, distribu-
 tion downweights outliers, allowing estimates to better summarize

 the majority of the data. The robustness of the t, model is controlled
 by the degrees of freedom, v. The tails of the likelihood function
 widen as v decreases, and outlying cases are increasingly down-
 weighted. As v grows, the t model resembles the normal. In the
 robust regression literature, v is a tuning constant that determines
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 the sensitivity of the estimates to outliners. Because the tuning con-

 stant is difficult to specify a priori, uncertainty about this aspect of

 the model specification can also be built into the Bayesian analysis.

 In the following analysis I experiment with likelihood functions

 basedon v = 1, 1.5, . . . ,20.

 Applying the log transformation to the raw strike data gives a

 log-t model that is identical to the normal model except that the

 normal distribution is replaced by a t distribution:

 F*Sill~tliHil(xtl al,j6)@.,v
 t~~~~~~~~

 LSI18- 1I18(XI'18, a181,o2_'L +

 The contribution of a typical observation to the likelihood is given by

 Lij(aj, 0,8 1 F{(v + 1)/2} [ (Sf1 )2]0*.) jjka,Y,HYj)- qi Ji( 112)Ji( v12) 1/2 x [1 /L21

 An iteratively reweighted least squares algorithm described by Lange

 et al. (1989) and Rubin (1983) was used for estimation. MLEs are

 used to form the marginal likelihoods, posterior model probabilities,

 and the model-mixing results with equation (7). Means and standard

 deviations of the model-mixing posterior can then be obtained with

 equations (2) and (3) or by simulation.

 The regression results for selected models are reported in Ta-

 ble 4 (country intercepts have been omitted). Log likelihoods indi-

 cate the superiority of the t model on 5.5 degrees of freedom. All

 three models reported provide strong evidence for the positive ef-

 fects of union density, inflation, and union centralization on strike

 volume. With the t5.5 likelihood, the 10-point decline in union density
 experienced in the United Kingdom and the United States is esti-

 mated to reduce strike volume by nearly a third. A 10-point rise in
 inflation, characteristic of the Western European countries in the late

 1960s, is associated with a 50 percent increase in strike volume. The

 inflation and union density estimates are consistent with theory and

 the historical record, which associates the strike waves of the 1960s

 with rapidly rising prices and labor passivity in the 1980s with shrink-

 ing labor organization (Soskice 1978; Shalev 1992). A similar substan-

 tive story is provided by the t1 model, although likelihoods indicate
 that this model receives little support from the data.
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 TABLE 4

 Regression Analysis of Log Strike Volume in 18 OECD Countries, 1951-1985.

 Error Distribution Bayes
 Independent Mixture

 Variables Normal ti t5.5 Posterior

 Union density .0265 .0232 .0268 .0269

 (.0070) (.0037) (.0057) (.0061)
 Unemployment - .0212 - .0067 - .0148 - .0164

 (.0202) (.0102) (.0165) (.0176)
 Inflation .0388 .0412 .0387 .0383

 (.0111) (.0053) (.0089) (.0096)

 Left parties .0000 -.0048 .0006 -.0002

 (.0063) (.0030) (.0050) (.0054)

 Union centralization -2.6449 -2.8100 -2.6928 -2.6918

 (.9224) (.4273) (.7250) (.7779)

 Log likelihood -948 - 1001 -936

 Note: Standard errors are in parentheses. The mixture posterior averages over t,
 likelihoods with v = 1, 1.5, . . . 20.

 Differences between the robust and normal theory results are

 reconciled by Bayesian inference. Figure 2 plots the maximized log

 likelihoods for values of v. The t5.5 model has the highest likelihood,
 but the likelihood is quite flat in the range 5 v -?- 8. Models in this

 range account for more than 40 percent of the posterior model proba-

 bility. The remainder is mostly spread over the thinner-tailed specifi-

 cations. Models with very thick-tailed error distributions contribute

 little to the final inference. The expectations of the mixture posteri-

 ors are quite close to the t5. MLEs, but the posterior standard devia-
 tions are about 10 percent larger. Still, even when model uncertainty

 is taken into account, sharp conclusions can be drawn about the

 direction of all effects except left parliamentary representation and

 unemployment. Inference based on the normal model alone would

 have been slightly conservative. In this application, the data give

 relatively strong support for a small subset of the models and prior

 uncertainty about the specification is reduced by the data.

 6. DISCUSSION

 The ideas presented here can be extended in several ways. The
 Bayesian treatment of model uncertainty suggests several non-
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 FIGURE 2 Maximized log likelihoods for different values of the degree of freedom pa-
 rameter, v, in the log-t model of strike volume.

 Bayesian alternatives based upon the introduction of new sample
 information. This analysis also speaks to recent methodological de-
 bates in macrosociology.

 One alternative to the model-mixing approach to model uncer-

 tainty involves the investigation of new sample data. Cross-val-

 idation provides a simple method where, say, half the data are closely

 analyzed for the purpose of model selection. The remainder are used
 to estimate parameters. Overfitting in the model selection stage of
 the data analysis is penalized at the estimation stage (Picard and

 Berk 1990). Ideally, if two data sets were available, one could be
 used for model selection and the other for parameter estimation.
 Neither approach may be feasible in macrosociology because data

 sets are small and nonstochastic. Data splitting would have little
 power in the welfare state analysis where multiple regression would
 be attempted with only nine cases. Because the data are not gener-
 ated by any repeatable data mechanism (Berk, Western, and Weiss
 1995), analyzing new data also seems impractical. The current data
 are often the only ones available.

 Another approach, similar in spirit to cross-validation but less
 demanding of the data, suggests bootstrapping the entire model selec-
 tion process (Efron and Gong 1983). A bootstrap sample is drawn
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 from the data, and several models are fit; one is chosen. A distribu-

 tion is built up from coefficients of the chosen models of many boot-

 strap samples. This is practical when models are selected with a

 statistical criterion. In macrosociology, model choice often involves a

 more complicated mix of substantive and statistical considerations.

 This is partly because models are fit with one eye to the specific

 historical stories of certain cases. Bootstrap applications will be less

 automatic in these settings where substantive criteria play a strong

 role in model selection. Sometimes the bootstrap will be undesirable

 on statistical grounds as Monte Carlo experiments show that when

 the number of candidate variables is close to the sample size, the

 bootstrap inaccurately measures statistical error due to model uncer-

 tainty (Freedman et al. 1988).

 Another alternative might informally employ the Bayesian

 ideas. Discussion of the data analysis would allow readers to judge

 whether the results were an artifact of the model search. More sys-

 tematically, sensitivity analyses could report variation in parameters

 for a large set of models (Leamer 1983). Both strategies informally

 pool results across models, explicitly considering model uncertainty

 in the final data summary. Although similar in motivation to the

 Bayesian approach, these strategies are often guided by poorly speci-

 fied intuition, and in any event, may be too conservative because the

 data are not used to assess the likelihoods of the different models.

 It might be objected that the problem of model uncertainty is

 completely internal to quantitative research. A key issue in recent

 debates on macro methods-the treatment of time and tempo-

 rality-is ignored, and the models of the welfare state and strike

 analyses resemble those targeted by the critics of conventional meth-
 ods. In some ways the problem of model uncertainty issues only an

 "internal" and not a fundamental "external" challenge to quantita-

 tive approaches to comparative and historical questions. However,
 there are at least three links between this paper and the issues occupy-

 ing the methodological discussions.

 First, one criticism holds that conventional quantitative appli-
 cations provide an excessively deterministic picture of the social
 world (Abbott 1988). This partly reflects misunderstandings of critics
 and researchers alike about the uncertain character of statistical esti-
 mates. But it also seems true that excessive determinism results from
 a mistaken belief in the certainty of statistical findings. If limitations
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 on theoretical knowledge are taken seriously, uncertainty statements

 will often be revised upward, and researchers will increasingly con-

 clude that the available data do not sustain a confident answer to a

 research question. New levels of uncertainty about statistical esti-

 mates that result from a full accounting of model uncertainty may

 provide new impressions of contingency in social processes.

 Second, by treating assumptions as doubtful, uncertainty could

 be introduced into deterministic alternatives to statistics, such as narra-

 tive or Ragin's (1987) qualitative comparative analysis (QCA). As
 things stand, narrative methods and QCA are deterministic in the
 sense that no uncertainty surrounds the data summaries they provide.

 (Schama 1991 makes this observation for narrative; Ragin 1987, pp.

 113-18, discusses this for QCA.) An apparently unique narrative, for
 example, is sustained by the evidence, and the assumptions behind the

 analysis (though often inexplicit) are treated as known with certainty.
 To introduce a stochastic element, researchers could report how narra-

 tives or QCA conclusions change as a result of altering assumptions. If

 several different narratives can be based on the same evidence, these
 variations could be presented to ensure that the preferred narrative is

 not atypical. Griffin (1993) offers an analysis of this sort. QCA applica-
 tions could assess the sensitivity of conclusions to the list of variables

 included for analysis. In both contexts the objective is to see whether a

 wide variety of assumptions admits a wide variety of conclusions.

 Whatever the method, there should be little confidence in conclusions
 that are highly sensitive to the choice of assumptions.

 Third, uncertainty in quantitative macrosociology could be

 reduced by introducing more prior information, imposing sharper

 restrictions on the space of possible models. This nonsample informa-

 tion might reasonably come from two sources: (1) interpretation of
 the historical record or (2) deductive theory. The historical approach
 dovetails with calls by Tilly (1984) and Isaac and Griffin (1989) for
 greater historical specificity in quantitative research. In this ap-

 proach, theoretical content could be developed with the rich histori-

 cal material that often informs quantitative macrosociology in a more
 informal way. Prior information with these origins may be too ideo-

 graphic for those, like Kiser and Hechter (1991), who prefer "gen-

 eral theorizing." For these researchers, prior information with a
 sound deductive basis may be more plausible. Regardless of the

 origins of nonsample information, theories that narrow the model
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 space should carry strong prior information about variable selection

 and stochastic form.

 This suggestion, however, is a double-edged sword. Paraphras-

 ing von Clausewitz, methodology is theory by other means. If we
 claim a lot for our theories, our methods are affected accordingly.

 Narrowing prior uncertainty about statistical models means that theo-

 retical assumptions-albeit historically grounded or deductively
 derived-become increasingly influential for research conclusions. In

 the Bayesian language, prior information increasingly dominates sam-

 ple information. If these more precisely specified models are reason-
 able approximations of the processes under study, the increasing influ-

 ence of prior information is of little concern. On the other hand, if the

 models are precisely specified but wrong, we would acquire greater

 certainty at the cost of being wrong. I see no compelling examples of
 precise theory that are highly informative about variable selection,
 functional form, and stochastics. If this is a realistic assessment of
 current knowledge, researchers should routinely examine a large num-

 ber of models, letting any restrictions on the model space be imposed

 by the data rather than prior beliefs. Statistical assumptions could
 then remain as tentative empirical assertions whose uncertainty is
 recognized with the tools of Bayesian inference.
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