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 STATISTICAL INFERENCE FOR
 APPARENT POPULATIONS

 Richard A. Berk*
 Bruce Westernt
 Robert E. Weiss*

 In this paper we consider statistical inference for datasets that
 are not replicable. We call these datasets, which are common in

 sociology, apparent populations. We review how such data are

 usually analyzed by sociologists and then suggest that perhaps
 a Bayesian approach has merit as an alternative. We illustrate

 our views with an empirical example.

 1. INTRODUCTION

 It is common in sociological publications to find statistical inference

 applied to datasets that are not samples in the usual sense. For the

 substantive issues being addressed, the data on hand are all the data

 there are. No additional data could be collected, even in principle. In

 this paper, we call the complete set of all units comprising such data-

 sets an "apparent population." Consider the following examples.

 Thanks go to Jan de Leeuw, David Freedman, Edward Leamer, Roder-
 ick Little, William Mason, and Donald Rubin for the many discussions that
 helped us think about the issues raised in this paper. Additional and special
 thanks go to David Freedman for his detailed written comments. Finally, we
 are indebted to several reviewers who held our feet to the fire. If we still do
 not have it right, it is not for the lack of smart, knowledgeable, and helpful
 colleagues.
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 422 BERK, WESTERN, AND WEISS

 Cross-national Research. Perhaps the most common illustrations of

 apparent populations are found in cross-national research when a set

 of countries is studied at one point in time. An early example is

 Lipset's (1959) classic study of the relationship between democrary

 and economic growth in 48 industrialized and developing countries.

 Since then, many scholars have explored the links between democ-

 racy, development, income inequality, and political violence. Re-

 views of this material can be found in Bollen and Jackman (1985),

 Rueschmeyer and colleagues (1992), and Jenkins and Schock (1992).

 OECD Countries. A second generation of quantitative compara-

 tive research has focused on a much smaller group of industrialized

 capitalist democracies. Analyses of approximately 18 OECD coun-

 tries have explored the causes of social welfare spending, economic

 performance, the development of political institutions, and union-

 ization (Stephens 1979; Wilensky 1985; Lange and Garret 1985; Grif-

 fin et al. 1990; Western 1991).

 American Cities. Urban sociologists also commonly rely on data

 from apparent populations. In a recent paper on the effects of Ameri-

 can trade unions on racial and ethnic conflict, for instance, Olzak

 (1989) analyzed data on the 81 largest American cities. Other popu-
 lar datasets contain information on a collection of SMSAs. For exam-

 ple, Ross's 1987 study of corporate networks in metropolitan centers

 uses data from all 157 SMSAs in the United States. Lincoln (1978)

 and Abrahamson and DuBick (1977) used SMSAs in their earlier

 studies of urban dominance.

 Miscellaneous Data. Data from apparent populations are common

 in political sociology (e.g., Stepan-Norris and Zeitlin 1989), criminol-

 ogy (e.g., Ehrlich 1977), evaluation research (e.g., Wright et al.
 1979) and economic sociology (e.g., Wallace and Kalleberg 1981).

 Data from apparent populations create conceptual problems

 for statistical inference. First, the data are not generated by probabil-
 ity sampling or random assignment. Second, and far more important

 for this paper, an apparent population is the result of a data genera-
 tion mechanism that produces only a single batch of data. In effect,

 the machinery is turned off after a single batch is produced; the data

 generation mechanism cannot be expected to produce another data-
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 STATISTICAL INFERENCE FOR APPARENT POPULATIONS 423

 set. Extending common illustrations, a coin is only flipped once and
 then thrown away, or a roulette wheel is spun a single time, and then

 dismantled, or one hand of blackjack is dealt and then the game is
 over.

 There have been two kinds of reasoned responses to such

 data-generating mechanisms. On the one hand, the data are treated

 as "fixed," and the usual concerns about sampling error are dis-

 carded. That is, the data are treated as if they could not have been
 different as a result of sampling error. Then, conventional statistical

 inference becomes irrelevant. An apparent population has become a

 true population, and descriptive statistics are employed.

 On the other hand, the data are treated as a "realization" of

 some set of social process that could have in principle produced a

 very large number of other realizations. These realizations, in turn,

 constitute a super population. That is, the data could have been

 different as a result of random sampling from the "super popula-
 tion." Then, conventional statistical inference is applied as usual. An

 apparent population has now become a random sample.

 In this paper, we explore the tradeoffs between these two ap-

 proaches and then argue that Bayesian reformulation might be a bet-

 ter alternative. We argue that since at least part of the problem is the

 usual frequentist interpretation of probability, it may well make sense

 to replace it. Our arguments are meant to reach a broad audience of

 sociologists; we have tried to pitch the paper down the middle.

 2. A BRIEF REVIEW OF FREQUENTIST

 STATISTICAL INFERENCE

 Frequentist statistical inference is meant to address uncertainty in

 data (and therefore in any computed sample statistics) introduced by
 the sampling mechanisms that produced the data. In particular, the

 data are typically treated as a random sample from a specified para-
 metric distribution (Barnett 1982 pp. 121-23). Other sources of un-
 certainty are not addressed. For example, in sample surveys, such
 problems as nonresponse, response errors, and interviewer error

 may be terribly important but are not formally included (Groves
 1989, ch. 1).

 One of two generic sampling strategies is typically assumed
 (Berk and Brewer 1978; Noreen 1989): probability sampling (e.g., in
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 surveys) and random assignment (e.g., in experiments). Since for

 both probability sampling and random assignment the data are gener-

 ated through known probability procedures, it is possible to formally

 represent the uncertainty that results. In effect, we have an accurate

 model of the data generation process. By capitalizing on what would

 happen in principle if numerous samples were generated indepen-

 dently by the same process, it then becomes possible to represent the

 uncertainty in our parameter estimates by such devices as a sampling

 distribution for parameter estimates in a very large number of identi-

 cal, hypothetical, "trials." Confidence intervals and significance tests

 follow.

 It is important to stress, however, that the entire enterprise as

 usually undertaken depends on at least three premises. The first is that

 we know how the data were generated. That is, probability sampling

 and/or random assignment were used in known ways. Often, however,

 it is quite difficult to know how the data were sampled or assigned

 because the research design breaks down in practice. For example,

 some prospective respondents may refuse to be interviewed.

 The second premise is that we are satisfied with an interpreta-

 tion of uncertainty for parameter estimates as a distribution of out-
 comes over a very large number of hypothetical, identical, and inde-

 pendent trials. We share the concerns of many observers who are
 uncomfortable with a long-run interpretation of uncertainty when, as

 a practical research matter, all the data are on hand. Also in practice,
 researchers cannot wait for the long run to arrive (Barnett 1982, ch.
 3). Thus we might be able in principle to draw 500 independent
 samples of 1,000 from the population of all adults living in a single

 metropolitan area, but what does that say about sampling error for
 the single random sample actually on hand? For other criticisms of
 frequentist inference, see Leamer (1978) and Barnett (1982).

 The third premise is that the thought experiment of a large
 number of identical and independent trials is consistent with how in
 fact the data were generated. That is, we do not need to invent a
 science fiction world to make instructive the idea of a large number
 of identical and independent trials. How easy it is to do this is contro-
 versial (Leamer 1978, ch. 2). What kind of world would one have to
 have, for instance, to be able to actually take 500 independent simple
 random samples of all adults in a single metropolitan area? And how
 realistic is it to think about someone actually doing it?
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 STATISTICAL INFERENCE FOR APPARENT POPULATIONS 425

 In short, statistical inference based on imagery of the long run

 is an imperfect tool even in theory and even when applied in the field

 as well as scientists know how. When we do not have the data gener-
 ated by random sampling or random assignment, a number of new

 problems are introduced. We turn to these now.

 3. STATISTICAL INFERENCE OF

 APPARENT POPULATIONS

 Imagine a longitudinal dataset for a single developing nation in

 which a number of economic indicators and measures of social unrest

 are included. The substantive question might be whether in this coun-

 try for the historical period represented, there is a relationship be-
 tween economic growth and social unrest. Clearly, the data do not

 derive either from random sampling from some defined population

 or from random assignment to experimental and control conditions.

 The data generation mechanism is, on its face, not ignorable. More
 important for our purposes, both the country and the particular his-

 torical period are not exchangeable with other countries or historical

 periods. Consequently, the data are a single trial. What then might
 be done about sampling error? Or is there any need to worry about it
 at all?

 3.1 Treating an Apparent Population as a True Population

 Under one conception, the data may be treated as a (fixed) popula-
 tion. There is, after all, only one such country during the historical

 period of interest. Then, statistical inference is moot. Descriptive
 summaries of the population can be used. In effect, we assume the
 data could not have been different because of sampling error. And
 the data from the apparent population become data from a true
 population.

 It cannot be overemphasized that a completely deterministic
 world is necessarily assumed, at least with respect to sampling error.

 If the data could not have been different because of sampling error,
 the data-generation process is effectively deterministic by default.
 Disparities found in attempts to replicate the results are caused by
 other kinds of error or substantive differences across sites or histori-
 cal periods, not sampling error. In our example, this implies that if
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 426 BERK, WESTERN, AND WEISS

 the historical process for the particular period and for the particular

 country in question could be started again, the data would turn out

 exactly the same. Put another way, given the conditions extant in the

 beginning of the period, one (and only one) set of events could have

 unfolded. Should such a conception of historical processes be discon-

 certing, the alternative is to introduce the possibility of stochastic

 historical processes, which we shall address shortly.

 The same issues arise with any apparent population treated as

 a true population. We might have, for example, data on all of the

 NATO countries for 1980, or ten years of data on each of the ten

 largest cities in South America, or 20 years of the data from the turn

 of the century on all of the counties in Louisiana. If we are prepared

 to accept a deterministic view of the social process that generated the

 data, we may dispense with statistical inference. Perhaps the major

 message is that there is a price to be paid for treating the data as a

 population; we are not simply discarding a technical embellishment
 but making a positive commitment to a particular view of how the

 data were produced.

 3.2. Treating an Apparent Population as a Random Sample

 An alternative to treating an apparent population as a true popula-

 tion is treating an apparent population as a random sample. But if an

 apparent population is to be a random sample, the population from
 which it is drawn must be defined. This population is sometimes

 called a "super population," with samples from the population called
 "realizations." Then we can rely on the thought experiment of what
 would happen in a very large number of random and independent
 draws (or realizations) from this super population and apply conven-

 tional statistical inference as usual.

 It is likely that in the sociological literature whenever statisti-
 cal inference has been applied to apparent populations, the super

 population framework is being implicitly assumed. It seems useful,
 therefore, to consider the issues in a bit more depth. We suspect that
 even researchers who are thoroughly familiar with the mathematics
 of frequentist inference sometimes lose sight of its applicability.

 Consider first a model of radioactive decay (Eisberg and

 Lerner 1981, p. 907). Over a short period of time, counts of the
 number of particles per time period are well described by a Poisson
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 distribution (Johnson and Kotz 1969, pp. 88-89), and the assump-
 tions necessary for that distribution are consistent with what is
 known about the physics. In effect, therefore, there is an unobserved

 population distribution that is well described by some member of the
 Poisson family of distributions, and each count can be viewed as a

 random and independent observation from that distribution. A set of

 such observations can be treated as a random sample from which

 summary statistics, such as the mean, can be computed. In short, the

 physical world is modeled as if a simple random sample from an

 unknown but parameterized population were the data-generating
 mechanism. Finally, we can easily envision a very large number of
 realizations of the same process and sampling distributions of the
 summary statistics.

 In contrast to a random sample from a known population,
 the population of particle counts does not already exist. In the case

 of radioactive decay, however, we could in principle generate a very
 close approximation of the population by monitoring the radioac-

 tive decay over a long period. Likewise, we could in principle col-
 lect data from a very large number of realizations and construct the

 sampling distribution of a parameter estimate. Furthermore, what is
 known about the data-generating mechanism indicates that the pro-

 cess by which particles are produced is a very good approximation
 of simple random sampling, well described by a tractable distribu-
 tion. Consequently, it may be instructive to apply the same mathe-
 matics to both processes; random sampling done by a scientist and
 radioactive decay.

 Consider now a study of the number of suicides occurring in
 Manhattan per day. We might begin by assuming on theoretical
 grounds that the data-generating mechanism is a Poisson process,
 implying that the count on any given day is a Poisson random vari-
 able (Larson 1969, pp. 146-47). That is, there is an underlying social
 process producing suicides whose outcomes on each day may be
 described by the density for a Poisson random variable. In principle,
 any given day may be associated with one of several different counts.
 As a result, the count associated with any given day can be conceptu-
 alized as a realization of a Poisson process and as a random sample of
 one from a distribution of all possible counts. Then, a set of days
 becomes a realization of the process from which summary statistics
 can be computed. And as before, we can easily imagine the empirical
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 world generating a very large number of such realizations and sam-

 pling distributions for the summary statistics.

 In effect, it can be assumed that the social world generates the

 equivalent of a random sample much like the samples generated by

 radioactive decay; the social world replaces the physical world as a

 sampler. In this context, there are three key assertions. First, the

 data on hand could have been different. Second, the number of

 suicides on any given day (or some other time period) is a simple

 random sample of one from an underlying Poisson distribution char-

 acterizing the population.1 Third, the social process producing sui-

 cides is stable enough so that it is not fatuous to imagine a very large

 number of realizations behaving like a very large number of indepen-

 dent, identical trials. Put another way, with sufficient patience we

 could actually produce a close approximation to the sampling distri-

 butions in question. For us, both the second and third assumptions

 require a very long reach. (See, for example, Phillips' work on sui-

 cide [1974]).

 3.3. Randomization Tests

 An analogous imagery can be applied to random assignment. We

 might be interested in, for example, whether there is any association

 between voter turnout and how close an election is (Noreen 1989,

 pp. 19-22). In particular, for the presidential election of 1844, data

 might be collected for each state on the percentage of eligible voters

 who voted and the absolute difference in the percentage of the total

 obtained by each of the two candidates (i.e., Polk and Clay). One
 empirical possibility is that the two variables are really independent.

 To pursue this, we might imagine how the variables would be related

 if they were indeed independent; which suggests considering what

 would happen if the data for one of the variables were thoroughly

 shuffled. (Shuffling one variable is enough, and equivalent to shuf-
 fling both.) That is, the order of the observations for the first vari-
 able are random with respect to the order of the second. Put another
 way, the values of the first variables are assigned to states at random.

 1This requires that the population be very large, that the probabilty of an
 individual committing suicide is constant over time and very small (or equiva-
 lently, that the mean number of suicides in the population is constant), and that
 individuals are independent.
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 What would the association between the two variables be then? And

 if a very large number of such shuffles were undertaken, and each

 time a measure of association computed, a sampling distribution

 under the usual null hypothesis of the measure would result. It would

 then be possible to formally address the variability in our measure of
 association in the null situation of no association by comparing the

 actual value computed from the data in the absence of shuffling to

 the null value, through such devices as tests of statistical significance.

 We embed the actual event observed in an artificially constructed

 population of presumably similar events.

 Such randomization tests capitalize on the formal mathemat-

 ics of random assignment (Edgington 1987), but it is hypothesized

 that the social world, not the researcher, is doing the assignment at

 random. How reasonable this is typically depends upon the three

 premises much like those discussed earlier. First, the empirical rela-

 tionship between the two variables is stochastic; the observed associa-

 tion could have been different. Second, given the null hypothesis,

 the data on hand are a random sample from a null population of all

 possible random shuffles of the data. Third, it is not fatuous to think

 of the social world (under the null hypothesis) as producing a very

 large number of such shuffles, at least in principle. In this instance,

 the three premises add up to rather strong statements about the

 historical processes associated with the election of 1844. For exam-

 ple, it seems implausible to us that the social world could manage to

 shuffle the data so that the bivariate statistics would change but the

 univariate statistics would not.

 Freedman and Lane (1983) provide an interesting variation on

 this theme. They operationalize a surprise faced by researchers with

 apparent populations as the degree to which the data represent in

 some general way an artifact or fluke. If in all possible shuffles,

 summary statistics equal to or greater than the given summary statis-

 tic are very rare, that statistic is to be taken seriously. Note that

 nothing about the social world is being asserted. In effect, Freedman

 and Lane operationalize an "artifact" as an outcome that would have
 been uncommon under a shuffling scheme implemented by the scien-

 tist. Unfortunately, it is not altogether clear why we should care. The

 original problem was uncertainty produced by the social world. Un-

 certainty introduced by the scientist once the data are in hand is

 another matter entirely. Therefore, justification for the Freedman
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 430 BERK, WESTERN, AND WEISS

 and Lane approach must be found elsewhere. We might try to make

 the case, for example, that the test is somehow useful despite the

 absence of any explicit links to the empirical world from which the

 data came.

 However, approaching conventional statistical inference

 through its "usefulness" is very different from approaching statistical

 inference as if we were modeling the data-generation mechanism.

 When we have random sampling or random assignment, frequentist

 inference rests (at least in principle) on a reasonable approximation of

 how the data were actually sampled. And there are typically empirical

 clues (e.g., the response rate in sample surveys) with which one can

 explore how well the model corresponds to the ways in which the data

 were produced. For apparent populations, there is no sampling and,

 therefore, no clue about whether the data were generated according

 to some sampling plan. To proceed as if the data were generated by

 random sampling or random assignment is to embrace a fiction. Then,

 to justify the application of conventional statistical inference by claim-

 ing that it is nevertheless "useful" is unsatisfying unless it is possible to

 clearly explain what is meant by "useful." We suspect that this is very

 difficult to do, and we have yet to find an instructive discussion in the

 scholarly literature (see, for example, Morrison and Henkel 1970;

 Barnett 1982; Oaks 1986).

 In summary, there are two ways to treat an apparent population

 as a sample: the first employs the concept of a realization from a super

 population and the second the concept of random shuffling. But in

 both cases, we proceed as if the social world is capable of producing a

 very large number of independent trials. It is, of course, easy to as-

 sume that a very large number of independent trials could be pro-

 duced, but for the kinds of apparent populations likely to be of interest

 to sociologists, the implied data-generation mechanism would likely

 be at variance with the relevant social theory. More examples follow
 shortly.

 3.4. Extensions to Regression Problems

 For most work in sociology, the associations of interest are typically
 conditioned on "control" variables. Thus we might examine the rela-

 tionships between turnout and the competitiveness of the presiden-
 tial election of 1844, controlling for such things as the proportion of
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 voters registered as Democratic. This requires moving to a slightly
 more complicated framework. However, there are really no new

 issues involving statistical inference for apparent populations, so we
 will be very brief.

 Multiple regression is ubiquitous in sociological research and

 will illustrate nicely how the influential approaches described above

 may easily be extended to conventional multivariate problems. We

 will assume, consistent with most expositions, that the explanatory
 variables are fixed. That is, we condition on the observed values of

 the explanatory values. Only the response variable is subject to
 stochastic forces.

 If the data being used do not derive from probability sam-
 pling, one can, once again, tell a story in which the social world

 produces data as if by repeated random sampling. For each configura-

 tion of values for the explanatory variables, an observed value of the

 response variable is viewed as but one of a very large number of
 values that could have been observed in principle.

 When such cases have to be made, it is often easier to formu-

 late the regression model so that each observed value for the re-

 sponse variable is comprised of two parts: a deterministic part and a

 stochastic part. The deterministic part is the linear combination of

 values of the explanatory variables. The stochastic part is a distur-
 bance term that behaves as if each value were independently drawn
 at random from some specified distribution, usually the normal distri-
 bution. More formally we can write

 Y = ?$30 + XXij3j + ui, ui - N(O, o-2). (1)

 The disturbance term is interpreted as a random perturbation

 that introduces stochastic variation into Yi. Then, a plausible argu-
 ment must be made that the social world can repeatedly generate
 these perturbations in a manner that meets certain distributional

 assumptions; in a very large number of opportunities, the social
 world must produce disturbances that behave as if drawn over and
 over independently from a particular normal distribution (although
 the assumption of normality is often not critical).

 We are hard-pressed to find any examples in the sociological
 literature in which the relevant theory and/or empirical literature
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 directly justifies such formulations. Why should the disturbances

 associated with labor unrest, for example, behave as if drawn inde-

 pendently and randomly from a particular normal distribution? In

 contrast, consider illustrations for the physical and biological sci-

 ences where the sources of stochastic variation are a key part of any

 theoretical formulations and from which particular probability distri-

 butions necessarily follow. In addition to the illustration of radio-

 active decay described earlier, consider Mendelian genetics, the

 dispersion of pollutants in stream channels (Young and Lee 1993) or

 variation in the size of fish populations (Speed 1993).

 Therefore the usual justification for the disturbance distribu-

 tion, when one is provided, is that if there are a large number of

 omitted variables, each uncorrelated with the explanatory variables

 included in the model and with each other, and each with a small

 impact on the response variable, they will produce in the aggregate a

 normal distribution of IID disturbances consistent with the assump-

 tions of the regression model. In effect, potential explanatory vari-

 ables are of two rather different kinds: a few with "big" effects and

 many with "small" effects. Then, if the former are explicitly included

 in one's regression model, the latter can be swept into the disturbance

 term. Why the social world should be so conveniently divided into

 distinctly big and distinctly small effects is, of course, unaddressed.

 And why should these effects be uncorrelated? Equally important is
 whether it is sensible, once again, to imagine a social world capable of

 generating a very large number of independent draws from the same

 underlying disturbance distribution.

 To bring these statistical ideas down to concrete applications,

 consider a factory in which a machine produces over the course of an

 hour a number of discrete products such as small ball bearings. Sup-
 pose one measure of quality is the smoothness of each ball bearing
 and that despite efforts to ensure homogeneity in raw materials and
 production processes, some ball bearings are smoother than others.
 Viewed from the perspective of a regression model, smoothness

 could be the response variable, measures of the inputs (e.g., purity)
 and the production processes (e.g., temperature) could be the ex-
 planatory variables, and the minor variation in smoothness from
 other sources could be represented by a disturbance term.

 The key point is that for all practical purposes, one has in the
 ball bearing machine a replicable process. If the machine is running
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 properly and the mix of inputs is stable, a very large number of ball

 bearings could be produced that would be more or less alike. And it

 is arguably instructive to apply a regression formulation with the

 disturbances approximated by random, independent draws from
 some distribution.

 For the kinds of macro datasets common in sociology, it is
 difficult to believe that the social processes possess the same kind of

 replicability as our ball bearing machine. We would have to postulate

 a social world that, much like the ball bearing machine, is capable of

 producing some outcome over and over again in more or less the

 same fashion with more or less the same result. In effect, we would

 have to assume that history can be rerun, not just once or twice, but
 over and over.

 In summary, the usual regression formulations for apparent

 populations rests on a particular and, in our view, implausible view of

 the social world. In order to tell a sensible story about the sources of

 stochastic variation, a hypothetical world of replicability is con-

 structed. In effect, the social world replaces the scientist and is com-

 pliant enough to generate just the kinds of data the scientist needs.

 Arguably, this is a formulation driven more by convenience than
 reality.

 4. BAYESIAN INFERENCE

 We have argued that for apparent populations, a fundamental prob-
 lem with conventional imagery of statistical inference is the require-
 ment of a very large number of independent trials. But this derives in

 part from the frequentist interpretations of probability. Recall that

 for a frequentist, the probability of an event is commonly interpreted

 as the limiting value of the relative frequency of that event as the

 number of independent trials grows without limit. Subjective concep-

 tions of probability have very different foundations (Barnett 1982,

 ch. 3). In brief, subjective probability is an expression of uncertainty
 experienced by an individual. Thus, a statement that the probability
 of rain on a given day is .90 denotes how certain the speaker is that it

 will rain. It is not a claim about the limiting proportion of days, like
 the one in question, when it will rain.

 Modern formulations of subjective probability rest on a few
 axioms that many people would agree are sensible ways to conceptu-
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 alize uncertainty assessments (Lee 1989:2-10). With a few simple
 and reasonable axioms, it is possible to define probability as a degree

 of belief that, in turn, obeys the usual probability theorems. That is,

 the usual mathematics apply by and large, but they are given a differ-

 ent interpretation. Many scientists and statisticians argue that the

 subjective conceptions of probability fit more naturally with the way

 science is done, especially when combined with an apparatus for

 expressing and revising one's degree of belief (e.g., Howson and

 Urbach; Press 1989). That apparatus in called Bayesian inference.

 Bayesian inference takes many forms that imply different com-

 putations and different inferential philosophies. But its most com-

 mon form begins with a prior probability density expressing one's

 beliefs about some empirical fact. Then those prior beliefs are re-

 vised in light of some data, with the result being a posterior probabil-

 ity distribution expressing one's new beliefs about the empirical fact.

 We intend to just touch a few highlights and then to illustrate

 the use of Bayesian inference for the kinds of problems common in

 macrosociology. Textbook treatments are easily found (Lee 1989;

 Press 1989; Pollard 1986; Broemeling 1985; Box and Tiao 1973;

 Zellner 1971; O'Hagan 1994; Bernardo and Smith 1994). Readers

 might also keep in mind that empirical Bayes methods, such as those

 advocated by Mason and his colleagues (Mason et al. 1983) are very
 different from the Bayesian methods we will consider.

 4.1. An Introductory Illustration

 For many applications, the numerical conclusions from Bayesian

 analysis will be identical, or nearly identical, to the conclusions from

 frequentist analysis. Nevertheless, comparing the two approaches
 can be very instructive.

 Suppose the parameter of interest for some data analysis is the
 mean ,u of a population from which we draw a large sample of n
 observations. A mean X is computed and by the central limit theo-

 rem, X is known to be approximately normally distributed with a
 mean of ,t and a variance (o-2/n). This knowledge is usually referred
 to as a model, and can be written as

 X2 N ( y n ) (2)
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 Often n is large enough so that the sample variance 52 can be

 substituted as an estimate for o-2. Confidence intervals may be con-

 structed for the unknown population mean ,i. The 95 percent confi-
 dence interval for ,u is

 (X- 1.96 X+ 1.96 s) (3)

 From the frequentist point of view, the 95 percent confidence

 interval will in repeated samples cover the true mean ,i 95 percent of
 the time. Recall that this is a statement about the confidence interval

 construction procedure and not a statement about the particular in-
 terval constructed from the particular data set. Scientists typically

 are interested in the particular data set, conclusions about the data

 set, and the population it was collected from, not in statisticians'

 claims about their statistical procedures.

 A Bayesian approach may initially proceed in a similar fash-
 ion. However, having written down the model in equation (2), we
 can proceed further and write

 2

 , N(X, ). (4)
 n

 That is, ,t has a normal distribution centered on X with a vari-
 ance of o-2/n. It follows that a 95 percent confidence interval is exactly
 the same, but the interpretation is different.2 The Bayesian interpreta-
 tion is that the ,t for this problem is within the computed interval with

 a probability of .95. The probability .95, in turn, is a statement about

 the degree of belief of the researcher, who is 95 percent certain that ,I

 falls in the particular interval computed from the data. There is no
 reference to hypothetical repeated sampling, which means that there

 is no need to postulate or conceptualize the existence of an arbitrarily
 large number of additional random samples.

 Given a null hypothesis, equation (2) can also be used by
 frequentists to implement tests of statistical significance. With mean

 ,tt assumed equal to some value, the frequentist can easily compute

 2Bayesian intervals are often called credible intervals to distinguish them
 from confidence intervals. However, calling Bayesian intervals confidence inter-
 vals is not uncommon, and it is a practice that we follow here. Under suitable
 conditions, Bayesian intervals are asymptotically confidence intervals, so it
 seems reasonable to use the familiar term confidence intervals.
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 the probability that in repeated samples drawn from the population

 characterized by the null hypothesis, means more extreme than the
 observed mean X could have occurred. Once again, the inference is

 about what might have happened in a large number of additional

 random samples. Additionally, however, the null hypothesis can be

 viewed as information external to the data brought by the researcher

 to the data analysis. Before looking at the data, the researcher makes

 an assertion about a likely value of ,t. Bayesians develop and use
 such external information rather differently.

 4.2. Combining Information

 In our discussion of confidence intervals, both frequentists and

 Bayesians proceeded as if they had no information about ,i before

 looking at the data. This is often a reasonable way to proceed, and

 we favor such approaches as a part of a larger data analysis. How-

 ever, there is sometimes information available about plausible values
 for ,I before the data are examined. For example, there may be

 theoretical reasons to believe that ,t falls within a particular range, or

 there may be estimates of ,t from earlier studies. When such prior
 information exists, Bayesian methods provide a principled, general
 apparatus for combining the prior information with information from
 the current study.

 The use of prior information within the Bayesian framework is

 often controversial and a full discussion of the issues is well beyond
 the scope of this paper. But in brief, much of the concern arises
 because the prior information may be internal to the data analyst.
 The prior information is not generated by a process to which others
 necessarily have access. The process therefore, is not necessarily
 replicable and as a result, prior information may be sometimes
 deemed unscientific. Another concern is that the manner in which
 Bayesians must preserft prior information (see below) may lead to
 formulations of the prior information driven more by mathematical
 convenience than by the prior information itself.

 In response, Bayesians note that frequentists also employ prior
 information. Furthermore, the prior information is used in a manner
 that is neither well rationalized nor well documented. How, for exam-
 ple, is a particular null hypothesis generated? How is a particular
 model or estimator selected for one data set and not another? In
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 addition, Bayesians observe that if prior information is unacceptable,

 critics are not just free, but encouraged, to employ prior information

 of their own, or proceed as if no prior information existed. Also, if the
 number of observations in a dataset is large and the analysis is not too

 complex, the prior information will usually be swamped; the prior

 information will have very little impact on conclusions of the data

 analysis. Finally, in complex studies where the prior information is

 based on clearly explained previous studies, the prior may find greater
 support among skeptical researchers than the model itself.

 To illustrate, we can extend our previous example. We begin

 with equation (2) as before: X is distributed normally with a mean of
 ,i and a variance of o-2/n. We then introduce prior information about
 the value of ,t. In one of the mathematically simplest possible situa-
 tions, the prior information can be represented as the following prior
 distribution for ,a:

 1s~N(/io, o ). (5)

 The subscript "O" is used to indicate "time 0," before the data have

 been examined. Equation (5) implies that ,i is near ,a0, but how near
 is uncertain. That uncertainty, in turn, is represented as a probabil-

 ity: The probability that ,t is more than zl- To greater than (or less

 than) ,a0 is a, where zl- is the 1 - a quantile of a standard normal
 variable. In effect, the (1 - 2a) percent confidence interval is con-

 structed to characterize the researcher's information about ,t before
 looking at the data.

 By Bayes theorem, equations (2) and (5) can be combined to
 yield

 ,UIX - N(tLl, o- 2), (6)

 where the subscript 1 is used to indicate time 1, after the data have
 been examined, and

 n 1 1n 1
 + -1 X (L +2!10) (7) 0 2 o)( ' 0 )' 7

 and

 n 1
 21 = a2 + (72 ) * (8)

 0
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 Equation (6) is called the posterior distribution of ,i and repre-

 sents what the researcher believes after the prior information about

 ,i is combined with information from the data. The posterior mean of

 ,i is a weighted average of ,a0 and X, with the weights determined by

 the relative sizes of their variances. A larger variance implies less

 weight. Thus, if the researcher feels that virtually nothing is known

 about the likely value of ,a, o-i will be a very large number, which

 makes lo-J2 a very small number. As a result, /ik will be very close to
 X In this case, prior information does not affect the conclusions

 greatly. In contrast, if the researcher feels that the value of ,t is
 almost certainly ,u0, then o-2 will be very small, which makes I/o-2 a
 very large number. Then ,a0 and ,aL will be almost the same. Prior

 information dominates the story.

 The variance (r2 of /ij is determined by the variances of X and
 ,u0, and it is smaller than either. That is, the spread of the posterior
 distribution will be smaller than the spread of the prior or the stan-

 dard error of the sample mean. In this example, the information

 contained in the prior distribution leads to improved precision (i.e.,
 smaller variance).

 For the Bayesian, all of the information required for statistical

 inference is contained in the posterior distribution. That information

 may be summarized in several ways. Confidence intervals are popu-

 lar, but it is also common to see plots of the entire posterior distribu-
 tion. In any case, however the posterior is summarized, there is no

 reference to replications of the data generation process because the
 distribution refers to the researcher's degree of belief about a pa-

 rameter after examining the data and conditional on the given
 model.

 4.3. Multiparameter Applications

 Now we consider the same issue more abstractly. Drawing on Lee's
 (1989) discussion, suppose for the substantive phenomenon in ques-
 tion, there are k unknown quantities of interest,

 0 (016 02. 0k) (9)

 These may be means, variances, correlations, regression coefficients
 or other kinds of parameters, or transformations of them. Also sup-

 pose that the researcher is prepared to express some prior beliefs
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 about the values of these k unknowns in the form of a joint prior
 density function p(0). In practice, the expression for the prior density
 of the parameters 0 often includes a convenient model for the prior
 distribution (e.g., a multivariate normal density) and statements

 about the mean and variance of that multivariate normal density. In
 our illustration to follow shortly, there are three parameters for a

 model with an intercept in which union density is regressed on two
 predictors.

 Data are collected that are thought to contain information

 about the k unknown quantities. For n observations we have

 X = (XI, X2, . * * , Xi, * * * X Xn)- (10)

 In our illustration, Xi for country i is the value for union density.
 Union density can be conceptualized as having a probability density
 that depends on the two other explanatory variables and on 0. Often,
 we write the conditional density of the data more generally as

 n

 p(XAl) = f PXxii0) (1
 i=1

 This says that the individual countries provide independent informa-

 tion about the parameters, and the joint density is the product of the

 conditional densities of the Xi given the parameters.
 There are at least two ways in which the conditional density

 function for the data may be interpreted. For the "classical"
 Bayesian (Diaconis and Freedman 1986), the conditional density
 function is part of a "true" model for the data, and there is a "true"
 parameter that is to be estimated from the data. It is then possible
 to resurrect the imagery of a very large number of independent
 trials; the conditional density is the limiting distribution of data,
 given 0, as the number of independent trials grows without limit.
 For the "subjective" Bayesians, in contrast, the conditional density

 function for the data is a statement of belief about the likely values
 that the data will take given 0 (Jeffreys 1961, pp. 28-29). That is,
 uncertainty about the parameters, and uncertainty about the data
 given the parameters, are expressed in subjective terms. The impli-
 cations of these different interpretations of the conditional density
 function will be considered later. (See Leamer 1978, ch. 2, for an
 extended discussion of these differences.)
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 A key step in any Bayesian data analysis is to revise the prior

 density function based on information contained in the likelihood.

 Bayes theorem for random variables provides the apparatus, and the

 general method for it is

 p(01 X) c p(6)p(XJ0). (12)

 Stated in words, the posterior density of 0, given data X, is propor-

 tional to the prior density of 0 times the density of X given 0.3 The

 last term is the likelihood function, and it is sometimes written

 l(01X) = p(A]). (13)

 Writing l(OIX) in this way, we can emphasize that the data are treated
 as fixed, and the likelihood is considered to be a function of 0.

 4.4. Interpreting Multiparameter Results

 The natural product of Bayesian analysis is a joint posterior density

 for all the unknowns. However, the story that the researcher wants

 to tell is usually in terms of the marginal density for each unknown.

 That is, we want to average over k - 1 unknowns to obtain a density
 for the kth unknown alone. Then, we repeat the process for the other

 unknown O's in turn. If there are six O's, for example, we usually want

 to extract some summary of the marginal density for each 0 individu-

 ally (e.g., a confidence interval for each 0), not some summary of a

 single joint density for all six 6's as in a joint confidence interval for
 all of the 6's).

 In practice, obtaining the marginal density for each of the
 unknowns from the single joint density can be extremely difficult,

 especially if exact results are desired. However, there a number of
 recent developments that lead to useful approximations in practice
 (e.g., Tierney and Kadane 1986; Gelfand and Smith 1990) and that
 are increasingly available in statistical software (e.g., Xlispstat,
 S-Plus). For a variety of applications, therefore, it is relatively easy
 to obtain a useful approximation of the desired marginal densities.

 3The proportionality relationship can be replaced with an equality rela-
 tionship by including the proper constant in the denominator on the right-hand
 side. This is unnecessary for most applications and is commonly ignored (Lee
 1989 pp. 34-35).
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 4.5. Bayesian Sensitivity Analysis and Diagnostics

 Since our version of Bayesian inference depends on a subjective
 notion of probability, it is reasonable to ask how one researcher can

 rely on another researcher's results. Bayesians have at least two

 responses. The first is to note that the Bayesian analysis frequently

 gives similar results to a likelihood analysis. Consequently, if we

 expect research consumers to depend on the results of a likelihood

 analysis, we can expect them to depend on the Bayesian analysis as

 well. In reality, this argument rests on the false assumption that a

 frequentist analysis should be automatically usable by a research

 consumer. For example, Begg (1990) presents several analyses of a
 single data set, and the wide variety of results that can arise from

 different sets of starting assumptions.

 Some Bayesians (as well as some frequentists) offer a second

 response. Since others (consumers) may bring different prior infor-

 mation to an analysis, Bayesians use sensitivity analyses to assess the

 stability of conclusions to this prior information. If the conclusions

 are stable over a range of prior information, then anyone whose

 prior information is at least close to the set of priors considered

 should be able to depend on the research results. If the sensitivity

 analysis shows that the results change dramatically with varying prior

 information, the research consumer can simply employ his or her
 preferred priors.

 Prior information has traditionally meant the prior distribution

 p(O), but it is being realized increasingly that prior information also
 includes the model p(X0). In this context, it cannot be overempha-
 sized that any inferences that might follow from the posterior density

 depend on how well the model captures either the essential features of
 the data-generating processes or, for a subjective Bayesian, how well
 the model captures one's opinion about the relation between the data
 and the unknown parameters. Bayesians and frequentists may face

 similar issues in model specification. Even for randomized experi-

 ments or probability sample surveys, there will be important features

 of the structure that cannot be known with certainty, and matters are

 typically far worse for observational studies (Berk 1988; Freedman
 1991; Draper 1993). In short, for both Bayesians and frequentists,

 statistical inference may be moot well before any computations are
 undertaken.
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 There are a variety of diagnostics for Bayesian inference,

 many related to diagnostics used in frequentist inference (e.g., Pettit

 1986; Allenby 1990; Draper 1993). For example, it is often useful to

 consider how the posterior density of key parameters changes when

 potentially influential observations are deleted one at a time (Weiss

 and Cook 1992). It is sometimes instructive to examine the predictive

 distribution p(X) of a Bayesian analysis either for diagnostic or sub-
 stantive reasons (Box 1980).

 In our earlier notation:

 p(X) = f p(x1O)p(O)dO. (14)

 The predictive distribution is the distribution of X implied by the

 model taking into account the uncertainty in the models parameters

 (Lee 1989 p. 36). As such, it represents a prediction of the likely

 value of X. Just like the conditional distribution p(X10), the pre-
 dictive distribution may be interpreted from either a frequentist or

 subjective perspective. Under either interpretation, changes in the

 predictive distribution under various alterations in a proposed model
 can be used to gauge the importance of those alterations.

 4.6. Reference Priors

 To this point we have been assuming that the researcher can con-

 struct a prior density to represent a priori knowledge. What if the
 researcher is really approaching the data with a blank slate? What if
 there is little or no preexisting information on which to base a prior
 density?

 As noted in Section 4.2, the larger the variance of the prior

 density, the less certain the researcher is a priori about the likely
 values of the unknowns. One could imagine, therefore, simply in-

 creasing the variances substantially so that for all practical purposes,
 the density is "flat," at least in the region of interest. Prior densities
 of this sort are called "flat priors," "ignorance priors," "uninforma-
 tive priors," "Jeffrey's priors," (Box and Tiao 1973) or "reference
 priors. "

 Although there is a long and controversial literature on how
 best to represent prior ignorance (e.g., Barnett 1982, pp. 206-17), in
 many circumstances it may not matter very much. In practice, we can
 simply drop the prior from our computations, and let the posterior
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 density depend solely on the likelihood function. Alternatively, we

 can try several different reference priors and see whether the poste-

 rior densities are meaningfully different. Except possibly in small

 samples, they will not be.

 4.7. Bayesian Regression

 At the introductory level at which we are proceeding, it is relatively

 easy to make the jump to Bayesian regression. To begin, we formally
 express our beliefs about the regression coefficients before the data

 are examined. The regression coefficients are treated as uncertain in

 the sense that we do not know their values.4 This uncertainty, in turn,

 is expressed as a joint probability density of these parameters. For

 example, if 00 is a vector of prior means, and 10 is a prior covariance
 matrix, and the joint density is taken to be normal, the prior for joint

 density of the regression coefficients may be summarized as

 /3 - N(0o, Lo) (15)

 The vector of means locates the prior probability density;

 large values imply that the researcher believes that the coefficients

 are large. The main diagonal of the covariance matrix contains the

 variances; as measures of spread, larger variances imply greater

 uncertainty. The off-diagonal elements contain the covariances,

 which indicate the degree of dependence between the regression
 coefficients.

 Sometimes, a researcher may have very little information a
 priori about the joint prior probability density of the regression pa-

 rameters. In this case, the prior joint density will contain very large

 elements down the main diagonal of E. Effectively, the joint prior

 density is "flat." In practice, however, we think "total ignorance" is
 very rare. Although it may seem contrived to introduce prior infor-

 mation when in fact the researcher has very little, null hypotheses in

 conventional frequentist inference are essentially beliefs about the

 regression coefficients articulated before the data are analyzed, and
 hypothesis testing is endemic in sociology.

 With the prior density specified, information in the data is

 4For this discussion, we will assume that the sampling variance of the
 distribution is known. No essential points will be lost. See Box and Tiao (1973)
 for a more general treatment.
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 introduced into the analysis through the likelihood function. In the
 regression case, this requires that a joint probability density for the
 data given the parameters, has to be previously specified. The nor-

 mal is certainly convenient, but it is only an option. The data are

 taken as fixed, and relative likelihood values are associated with
 different possible values for parameters. Then, the joint and mar-
 ginal posterior densities may be computed as described earlier.

 4.8. Bayesian Inference for Apparent Populations

 Recall once again that apparent populations are characterized by

 single batches of data; the data-generation mechanism produces only

 the data on hand. Consequently, it is difficult to employ the imagery

 of a limiting distribution as the number of trials increases without

 limit. And this difficulty applies to both frequentists and classical

 Bayesians when the sampling density of the data given the parame-
 ters is considered. However, subjective Bayesians, who treat the
 conditional density as a representation of their uncertainty, have no

 inferential problem with a single batch of data. A sample space may
 be identified as usual, but the probabilities attached to each event in
 that sample space are subjective and do not depend on a large num-

 ber of trials (Leamer 1978, ch. 2).

 Consider the following example. Suppose a sociologist is inter-

 ested in the possible impact of the North American Free Trade
 Agreement (NAFTA) on jobs in the southwestern United States.

 Clearly, NAFTA is a very particular treaty set in very particular
 geographic historical circumstances. Whatever its impact, the imag-
 ery of a large number of independent trials is a very long reach.

 Suppose that one measure of impact will be the total number
 of jobs lost or gained within three years after the treaty's ratification.
 Suppose also that before the data are collected, the sociologist
 chooses to represent the structure of her beliefs about the likely value
 of the total with a normal distribution, conditional on parameters for
 the mean and variance. In other words, her model for the conditional
 density of the total number of jobs lost or gained is a particular (but
 as yet unspecified) normal distribution. This implies that she can
 attach subjective probabilities to different possible ranges of the to-
 tal, consistent with the density of a normal curve. Note that the
 model captures the structure of what the sociologist believes. It is not
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 a model of the data-generation mechanism. So, why should anyone

 care? Why should representation of the beliefs of a single sociologist
 be of interest to the larger scientific community? Scientists will care
 insofar as the model is consistent with the existing empirical and
 theoretical knowledge.

 For example, suppose at one extreme, the sociologist is unable

 to justify her use of the normal with any kind of external informa-

 tion. She appeals solely to some form of introspection inaccessible to

 anyone else. Then, there is indeed little reason to pay attention to
 her model.

 Suppose instead that the sociologist explains that as far as the

 approximation, she is proceeding as if the count of the number of

 jobs lost or gained is affected independently by a large number of

 variables, with no small subset dominating. It is affected, for in-

 stance, by the sum total of many decisions made independently by
 employers across the nation. Her use of the normal is then justified
 by an appeal to the central limit theorem. This is clearly an improve-

 ment because the assertion about the role of a large number of causal

 variables is in principle subject to empirical scrutiny. Perhaps now a

 few other scientists will take notice.

 Finally, at the other extreme, suppose there are several other

 studies of the impact of other trade agreements, perhaps based on
 the recent European experience, and some relevant theory that has

 credibility in the scientific community. With this information, she is
 now able to specify, in addition, how the mean of her normal model

 varies conditional upon the values of several explanatory variables.

 She has made the distinction between the role of a few variables that
 alter the mean and the role of the variables excluded from her model

 that affect the dispersion of the count around conditional means.
 Perhaps now she will get some respect. Moreover, she can specify a
 prior density for the model parameters, collect longitudinal data

 before and after NAFTA, and then generate posterior densities for

 both the model's parameters and the predictive density of the num-
 ber of jobs gained or lost.

 To summarize, if we are prepared to interpret a statistical

 model in subjective terms, we can do Bayesian inference for appar-

 ent populations. However, we would be among the first to admit that

 the models interpreted in subjective terms raise difficult issues. For
 example, should we equate our sociologist's subjective model with a
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 scientific theory? Are not both statements of belief about how the

 empirical world works? While a discussion of these issues is well

 beyond the scope of this paper (and a thorough discussion well be-

 yond our capabilities), it is clear that we would need to consider

 nothing less than the nature of scientific theory and the scientific

 enterprise itself. Provocative discussion of Bayesian inference in sci-

 ence can be found in books by Howson and Urbach (1989) and

 Earman (1992).

 5. EMPIRICAL ILLUSTRATION

 To illustrate the use of Bayesian inference for apparent populations,
 we analyze below the data used in a paper by Wallerstein (1989).

 This study of unionization in 20 advanced industrial democracies

 typifies the setting frequently encountered by macrosociological re-

 searchers. The regression model used is also representative. We

 stress, however, that we have chosen to work with Wallerstein's data

 and formulation because it captures well the kind of research found

 in major sociological journals. We take no stand one way or the other

 about the validity of the model or the quality of the data. The data

 are shown in Table 1.

 Wallerstein's response variable is union density D, union mem-

 bers as a proportion of potential membership in a particular country.

 The mean of union density is taken to be a function of two explana-

 tory variables: the representation of left parties in the government

 (Left) and the size of the civilian labor force (Size). The effect of the
 governing left parties is expected to be positive because labor and

 social democratic governments have historically assisted union orga-
 nizing legislatively and through the sympathetic administration of

 labor law. On the other hand, the effect of labor force size is ex-

 pected to be negative because larger labor forces are more expensive
 for unions to organize. Wallerstein also experiments with several
 control variables, but these add little to the fit of the data. Our
 Bayesian illustration is thus limited to a regression of union density
 on left parties in government and the size of the civilian labor force.

 Building on Wallerstein's analysis, the regression model has a
 log-log form

 ln(Di) = ?0 + 81 ln(Lefti) + /32 ln(Sizei) + Ui' (16)
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 TABLE 1

 Data for Union Density, Civilian Labor Force, and Index of Left Government

 Union Labor

 Density Force Left
 Country (%) (1000's) Government*

 Australia 51.4 5436 33.75

 Austria 65.6 2469 48.67

 Belgium 71.9 3348 43.25

 Britain 48.0 25757 43.67

 Canada 31.2 10516 0.00

 Denmark 69.8 2225 90.24

 Finland 73.3 2034 59.33

 France 28.2 18846 8.67

 Germany 39.6 23003 35.33

 Iceland 70.5 81 17.25

 Ireland 68.1 886 0.00

 Israel 80.0 997 73.17

 Italy 50.6 15819 0.00

 Japan 31.0 39930 1.92

 Netherlands 37.7 4509 31.50

 New Zealand 59.4 1050 60.00

 Norway 58.9 1657 83.08

 Sweden 82.4 3931 111.84

 Switzerland 35.4 2460 11.87

 United States 24.5 92899 0.00

 Source: Wallerstein (1989).

 *Left government is measured by Wilensky's cumulative index in which 1 year of

 left government in the period since World War I scores 3 points. One was added to each

 left government score before the log transformation.

 where the regression coefficients are interpreted as elasticities; a 1

 percent change in X11 yields a f3j percent change in Yi, and ui is as-
 sumed to meet the usual ordinary least squares assumptions. In par-

 ticular, ui is taken to be normally distributed.5
 Equation (16) can be interpreted as a model of the subjective

 conditional density of D. It is, therefore, a statement about what the

 researcher believes; it is a representation of his uncertainty about D.

 Whether others choose to take his beliefs seriously depends on the

 relationship between the model and what the others believe. Since

 5A normal quantile-quantile plot of the residuals gave no cause for con-
 cern once all the variables were logged.
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 the relevant actors are scientists, all parties presumably will be af-

 fected by shared understandings (at least in general terms) about the

 role to be played by the current data, past research, and existing

 theory.

 5.1. Specifying the Priors

 Recall that the first step in a proper Bayesian analysis is to consider the

 information one has before looking at the data. In this instance, it is

 clear from Wallerstein's theoretical discussions that he had rather

 specific expectations about the likely range of values for the regression

 coefficients. Our reading of the major sociological journals suggests

 that this is more generally true; perhaps fearing the charge of mindless

 empiricism, most sociological scholars provide rather clear priors

 (i.e., the range of values in which the regression coefficients are likely

 to fall) as a part of the "theory section" of their publications.

 Using the existing research literature on the determinants of

 union density (e.g., Stephens 1979; Korpi 1983; Western 1993), we

 can specify a joint prior density for the three regression parameters

 of interest (i.e., , /31, /32).6 It is convenient and reasonable to specify
 that the three have a joint normal distribution. Put another way, the

 convenience of the normal for expositional purposes is not out-

 weighed by some substantive reason to represent our prior knowl-

 edge with another distribution. It is also convenient and reasonable

 to specify that all three covariances between the coefficients are

 zero. This implies, for example, that whether the impact of the repre-
 sentation of the Left party is larger or smaller than an initial guess

 conveys nothing about whether the impact of the size of the civilian

 labor force is larger or smaller.

 6We will proceed as if the variance of the disturbances is known. For our
 purposes, the variance of the disturbances is a nuisance parameter; we have no
 substantive interest in its value. Moreover, treating the disturbances as known
 simplifies the exposition substantially. If the variance is not known, then the
 marginal distribution of each of the regression coefficients would have a
 t-distribution rather than a normal distribution. However, for a normal distur-
 bance term and a sample size of 20 (df for the error is 17), the t-distribution and
 the normal are moderately similar. So, nothing important is being lost here,
 assuming that the disturbance distribution is known. Moreover, as discussed
 briefly in the appendix to this chapter, the model was also estimated allowing the
 variance to be unknown, and the results were substantially changed.
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 Turning first to the mean and variance of the constant ,8o,
 other research provides very little information. Moreover, the con-
 stant is essentially irrelevant for Wallerstein's theoretical ideas. We

 put, therefore, a rather diffuse prior on the constant to reflect a great
 amount of uncertainty and very little interest; for Wallerstein, the
 constant is almost a nuisance parameter. Put another way, using a
 rather diffuse prior implies that the marginal posterior density for the

 constant will be heavily determined by the data on hand (via the
 likelihood function).

 The first row in Table 2 provides the details. The value of 10

 for the prior variance of 80 is meant to reflect little prior information
 about the value of the constant. The precise value of 10 was taken to

 reflect our considerable uncertainty, a priori. It implies we are 95

 percent certain that the value of the constant falls between plus and
 minus 6.3 (i.e., the prior mean of 0 plus or minus two standard
 deviations).

 The mean of the prior density for the regression coefficient for

 Left is .2. This indicates that we think that a priori on average, for a
 country with twice the social democratic incumbency over another
 country, we might expect union density to be about 15 percent
 higher. The second row also shows that before looking at the data,
 we were 95 percent certain that the value of the regression coefficient
 for the Left falls between .1 and .3. This translates into a variance of
 .0025.

 Finally, we are more uncertain about the impact of size. As
 the third row of Table 2 shows, the mean of the prior density for /32
 (the coefficient of labor force size) is - . 1, and the standard deviation
 is .1. This implies that we are 95 percent certain that regression
 coefficient f32 for the impact of size falls between -.3 and .1, an
 interval that contains zero. Thus our prior for f32 gives moderate

 TABLE 2

 Prior Parameters for the Regression of Union Density on Left and Size

 Two Times

 Parameters Mean Standard Error Variance

 Intercept 0 6.3 10
 Left .2 .1 .0025
 Size - .1 .2 .01
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 probability to both positive and negative values. On the average,

 however, we are asserting before looking at the data that a typical

 country would have a union density that is about 7 percent less than

 another country with half the labor force size.

 5.2. Results

 Table 3 provides the means, standard deviations, and 95 percent confi-

 dence regions for each of the three regression parameters under three

 conditions: (1) the usual OLS estimates, implying a flat prior with no

 prior information; (2) a diffuse prior constructed by multiplying prior

 covariance matrix described earlier by 5; and (3) the informative prior

 from Table 2. The first column, therefore, represents both computa-

 tional business as usual as well as a Bayesian baseline in which prior

 information is effectively ignored. The third column represents a pre-

 ferred approach drawing on our prior information. The second is an

 in-between case where prior information plays a modest role. In ef-

 fect, we are providing a sensitivity analysis to explore how much our

 posterior distributions depend on the prior distributions.

 The computations for the second and third columns are rela-

 tively simple. (See the appendix at the end of this chapter.) But

 software for Bayesian linear regression is now widely available on

 IBM-compatible computers. Perhaps more importantly, very general

 procedures for computing joint and marginal posterior densities,

 TABLE 3

 Posterior Means, Standard Errors, and 95 Percent Confidence Regions for Re-

 gressions of Union Density on Left Government and Labor Force Size, Ad-
 vanced Industrial Democracies, 1980-1985

 OLS Diffuse Prior Informative Prior

 Constant 4.849 4.757 4.519

 (.371) (.360) (.326)
 [4.121,5.576] [4.052,5.462] [3.880,5.157]

 Left .079 .091 .123

 (.036) (.034) (.029)
 [.009, .150] [.025,.158] [.066, .180]

 Size -.137 -.131 -.113

 (.038) (.037) (.034)

 [-.211,-.064] [-.202,-.059] [-.180,-.046]
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 even when one does not have a formally appropriate (conjugate)
 prior, are now available in S-Plus and Xlispstat; software is really not
 a problem. For example, we have been using Bayesian routines in

 Xlispstat for logistic and Poisson regression and have written pro-
 grams of our own for quite complicated models.

 The story from the marginal posterior densities is relatively
 straightforward. To begin, all of the confidence regions in Table 3 are
 given in Bayesian interpretation. Thus, for the OLS results, we are 95
 percent certrain that the regression coefficient for Left falls between

 .009 and .150, and that the regression coefficient for Size falls between
 -.211 and -.064. Since neither interval includes zero, we are also

 confident that we at least have the correct sign. Similar interpretations

 can be made for all of the 95 percent confidence regions.
 However, it cannot be overemphasized that these results are

 conditional on the model and the data on hand. If the model is not
 credible, our intervals are not credible; all of the usual concerns
 about specification error apply. And there is nothing explicit in the
 analysis that speaks to what the intervals would be for other data;
 our results are conditional upon the data.

 Moving across the table, we are able to see the impact of prior
 information. The mean of the marginal posterior density (and our

 "best guess" as a point estimate) for the coefficient of Left shifts
 upward from .079 to .123 (nearly doubling). Simultaneously, the 95
 percent confidence region shrinks. If the magnitude of the Left coeffi-
 cient is of substantial theoretical importance, the impact of our prior
 information is significant. The coefficient of Size, however, is far less
 affected by our information. The mean of our prior density was quite
 close to the OLS estimate based on a flat prior, so there was little
 "pull." In addition, the more dispersed prior implies that the prior,
 whatever its mean, would have less influence on the posterior density
 in any case. In summary, the data in this illustration lead to relatively
 modest revision of the priors we brought to the data.

 5.3. When Are Bayesian and Frequentist Conclusions Different?

 In our empirical illustration, the substantive conclusions from
 Bayesian and frequentist analyses would not differ dramatically.
 But sometimes they can. Perhaps the most common examples are
 found in studies using small samples when prior information can be
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 very important. Different conclusions can also result from how hy-

 pothesis testing is undertaken by frequentists and Bayesians. The

 issues are well beyond the scope of this paper (see Lee 1989 pp.

 123-43) and can vary depending on the kind of Bayesian or fre-

 quentist doing the analysis; but recall that frequentists build prior

 information into their null hypotheses while Bayesians build prior

 information into their prior densities. This can lead to rather differ-

 ent approaches to testing and different substantive conclusions.

 Such was the case in some of our recent work (Berk et al. 1992). A

 reasonable generalization may be that "slam dunk" empirical results

 will be recognized by Bayesians or frequentists alike. Difference

 can arise, however, when the weight of the evidence provided by

 the data is not compelling. And, it is our sense that much sociologi-

 cal research falls into this category.

 6. SUMMARY AND CONCLUSIONS

 This paper had two goals: to evaluate conventional analyses of data

 from apparent populations and to raise for consideration a Bayesian

 alternative. Our views on these issues are easily summarized.

 To begin, statistical inference is difficult even under the best

 of circumstances. Demanding assumptions must be made that are

 hard to meet in practice. However, it is one thing to say that statisti-

 cal inference is imperfect and quite another to say that it is useless.

 The decision about whether or not to proceed depends on what

 may be learned compared to the alternatives. Sometimes statistical

 inference will yield useful information and sometimes it will not.

 When it does, appropriate caveats must be introduced; when it does

 not, statistical inference should not be undertaken. For what it is
 worth, however, our reading of the sociological literature suggests
 that statistical inference is very commonly used when it obscures far
 more than it enlightens.

 For apparent populations, there have been two common ap-

 proaches to uncertainty. On the one hand, it is possible to treat an
 apparent population as a true population and dispense with statistical
 inference altogether. One proceeds, then, as if the data could not
 have been different; historical/macro processes are taken to be deter-
 ministic. On the other hand, one may treat an apparent population
 as a realization from some super population. An apparent popula-
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 tion becomes a random sample. One then has recourse to all of the

 existing frequentist apparatus. We have argued at length that both
 approaches are not fully satisfying.

 As a very different inferential approach, we have raised for
 consideration the use of Bayesian inference when one's data derive
 from an apparent population. The form of Bayesian inference re-

 quired, however, treats the distribution of the data, conditional on
 the parameters, as a subjective statement about what the researcher

 believes; what is represented is the structure of the scientist's uncer-

 tainty. While this would seem to solve the problem of statistical

 inference for data that are not replicable, it introduces controversial
 and complex issues about the nature of the scientific enterprise,
 which we make no pretense of resolving.

 All three alternatives have their strengths and weaknesses, but

 we believe that relying on the procedures that treat apparent popula-

 tions as either true populations or random samples ultimately will not
 suffice. We see no prospect of solving the problem of inference for

 apparent populations. In contrast, we see promise in the Bayesian
 approach. However, in the solution we are proposing there are a

 number of new conceptual problems that need further study. These

 include justification of the model (and implicitly the likelihood func-

 tion) and justification of the prior density, although model specifica-
 tion is hardly a Bayesian problem alone.

 What then are the implications for practice? We believe that
 the best way for the sociological community to explore the possibili-

 ties of Bayesian inference is to begin applying it. There is really no
 substitute for hands-on experience with real problems and real data.

 Philosophic discourse certainly has its place, but the true test is
 whether Bayesian inference improves the science. That can be deter-

 mined only by experience. The principal danger is that a new

 Bayesian ritual will simply be substituted for an old frequentist rit-
 ual. Bayesian inference must be employed in a careful, self-con-
 scious, and skeptical manner.

 APPENDIX A: SOME TECHNICAL DETAILS

 The usual linear regression model can be written as:

 y = X,8 + u, u - N(O, cr2I), (17)
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 where y is an N x 1 vector of observations on the response variable,

 X is an N x k matrix of fixed observations on the explanatory vari-

 ables, /8 is a k x 1 vector of regression coefficients, and u is an N by 1

 vector of disturbances. Within a Bayesian formulation, uncertainty is

 attached to the regression parameters 13 and (J2. We can proceed as if

 13 has a multivariate normal prior distribution with a vector of means
 b* and covariance matrix V*. That is

 13 - N(b*, V*) . (18)

 If a.2 is either known or estimated from the sample data and

 then treated as known, the posterior distribution of 13 is normal (e.g.,
 see Zellner 1971) so that

 3 - N(b**, V* *) (19)

 where

 V** (V* + S-2XTX)-, b**= V**(V*-lb* + S-2XTy). (20)

 If uncertainty in a2 is taken into account, the posterior distribu-

 tion of the regression coefficients has a multivariate t distribution and

 the expressions for the mean and variance are a bit more complicated

 (e.g., see Zellner 1971). In either case, however, the necessary compu-
 tations for the posterior distribution's mean vector and covariance ma-

 trix are easily programmed with any of several statistical programming
 languages: Proc Matrix in SAS, GAUSS, and S-Plus. We used S-Plus.

 Far more general approaches are also available in S-Plus and

 Xlispstat. Xlispstat, which may be obtained at no cost, runs well on

 Apple Macintoshes, UNIX workstations, and a variety of main-
 frames. There is also a version that runs under DOS on a PC, but it is
 limited to small datasets. We understand that a more powerful ver-
 sion of Xlispstat will soon be available for DOS machines. In any
 case, the senior author is delighted with the generality and power of

 Xlispstat and has now used it for a variety of problems. For example,
 it was easy to reestimate the models reported in Table 3 with the
 variance treated as unknown.
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