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VARIANCE FUNCTION
REGRESSIONS FOR STUDYING
INEQUALITY

Bruce Western*
Deirdre Bloome*

Regression-based studies of inequality model only between-group
differences, yet often these differences are far exceeded by resid-
ual inequality. Residual inequality is usually attributed to mea-
surement error or the influence of unobserved characteristics. We
present a model, called variance function regression, that in-
cludes covariates for both the mean and variance of a dependent
variable. In this model, the residual variance is treated as a target
for analysis. In analyses of inequality, the residual variance might
be interpreted as measuring risk or insecurity. Variance function
regressions are illustrated in an analysis of panel data on earnings
among released prisoners in the National Longitudinal Survey of
Youth. We extend the model to a decomposition analysis, relating
the change in inequality to compositional changes in the popula-
tion and changes in coefficients for the mean and variance. The
decomposition is applied to the trend in U.S. earnings inequality
among male workers, 1970 to 2005.

1. INTRODUCTION

In studying inequality, we can distinguish differences between groups
from differences within groups. Sociological theory usually motivates
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hypotheses about between-group inequality. For these hypotheses, in-
terest focuses on differences in group averages. For example, theories
of labor market discrimination predict whites earn more than blacks,
and men earn more than women. Human capital theory explains why
college graduates average higher earnings than high school dropouts.
Such theories are often tested with a regression where differences in
groups means are quantified by regression coefficients.

Although theory usually focuses on between-group differences,
within-group variance also contributes to inequality. Within-group in-
equality can be measured by the residual variance of a regression. Typ-
ically the residual is viewed as unexplained, and its variation is not
treated as substantively interesting. Although it is often overlooked,
residual heterogeneity may vary in substantively important ways. Some
groups may be more insecure than others, or vary more in unobserved
characteristics. The structure of within-group inequality may be espe-
cially important for sociological analysis where the residual variance
often greatly exceeds the between-group variance.

We present a statistical model of inequality that captures the
effects of covariates on within-group and between-group inequality.
Called a variance function regression, the model features separate equa-
tions for the mean and variance of the dependent variable. Regression
coefficients for the mean and variance can be estimated with specialized
calculations, though we show that they are well-approximated in large
samples with standard software.

Though variance function regressions have a long history in
econometrics and statistics (Park 1966; Harvey 1976; Cook and
Weisberg 1983), we use them to make three contributions to the so-
ciological analysis of inequality. First, from a substantive viewpoint, a
statistical model for the residual variance challenges sociological theory
to explain not only average differences between groups but also differ-
ences in the heterogeneity of groups. Large coefficients for the residual
variance indicate large differences in within-group inequality. Below we
motivate interest in these differences in within-group inequality with
theories of economic insecurity.

Second, a few studies have analyzed variation in the residual
variance, but only as a function of macro predictors (like metro areas or
occupations), and only using ad hoc methods for estimation. We follow
the statistical literature by writing a likelihood that includes regression
coefficients for the conditional mean and the variance. This approach
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allows macro and micro predictors for the residual variation and enables
the joint estimation of regression coefficients with smaller mean squared
error than ad hoc approaches. We apply the model in an analysis of panel
data to test the hypothesis that men released from prison experience
greater earnings insecurity (greater variance) in addition to the well-
documented decline in average earnings.

Finally, we apply the model to a standard decomposition of the
change in variance. This extension of the decomposition analysis offers
a simple way of studying the effects of individual independent variables
on changes in inequality. In our approach, changes in inequality may
result from (1) changes in the distribution of an independent variable,
(2) changes in means across levels of an independent variable, or (3)
changes in variances across levels of an independent variable. We also
describe a Bayesian approach to estimation that yields inferences for
nonstandard quantities from the variance decomposition, whose sam-
pling uncertainty is usually ignored. These methods are illustrated in
an analysis of the trend in U.S. earnings inequality using data from the
March Current Population Survey (CPS) 1971 to 2006.

2. BETWEEN-GROUP AND WITHIN-GROUP INEQUALITY
IN SOCIOLOGY

In a very general sense, sociologists are pervasively interested in
between-group inequality. Most claims about variability in a population
describe average differences between groups. Of course, not all studies
of between-group difference are framed as analyses of inequality. But
where inequality is the focus, it is generally conceived in between-group
terms.

The emphasis on between-group inequality seems clearest in the-
ories emphasizing categorical inequalities—inequalities between cate-
gorically defined groups (Tilly 1998; Massey 2007). In these accounts,
out-groups receive less because in-groups monopolize resources and
restrict access to opportunities. Average differences in incomes, well-
being, and mobility emerge as a result. The labor market theory of
discrimination exemplifies an account of categorical difference whose
main empirical implications are for between-group inequality. Research
on racial and gender discrimination thus estimates black-white differ-
ences, or female-male differences in earnings, typically controlling for



296 WESTERN AND BLOOME

a large number of confounding factors (Cancio, Evans, and Maume
1996; Budig and England 2001).

Regression provides a convenient framework for this analysis,
where the regression coefficients describe differences in group means.
Of course, regression also describes between-group differences with
continuous predictors. In this case, groups are defined across the fine
gradations of the continuous variable.

Although between-group differences dominate sociological
thinking about inequality, the regression model also includes a term
for within-group differences. Write the regression for observation i,

yi = b0 + b1xi + ei ,

with expected value ŷi = b0 + b1xi . With errors, ei , uncorrelated with
the predictors, xi , inequality in yi , measured by the variance, can be
expressed as the sum of the variance between groups and the variance
within groups,

V(yi ) = V(ŷi ) + V(ei ).

↑ ↑
Between Within

Group Group

In a least-squares regression, the empirical residuals are uncorrelated
with xi by construction, so the variance of yi mechanically equals the
sum of the residual variance and the variance of predicted values for
the yi . The residual variance, V(ei ), may reflect measurement error
rather than an underlying social process. Often, however, residuals are
viewed as capturing real but substantively uninteresting variation. For
example, Blau and Duncan (1967:174) remark that residuals reflect a
(thankfully) unpredictable social world, but the magnitude of residuals
is unimportant for understanding inequalities in educational attainment
or occupational status. “The relevant question about the residual,”
they write, “is not really its size at all, but whether the unobserved
factors it stands for are properly represented as being uncorrelated with
measured antecedent variables” (Blau and Duncan 1967:175). From
this perspective, residuals are not intrinsically interesting, but may be
helpful for discovering omitted variables.
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In contrast to Blau and Duncan (1967), residual variability may
be a substantively important difference between groups. For example,
among children at age 10, boys are overrepresented in the top tail of the
distribution of measured intelligence, and average slightly higher scores
than girls on intelligence tests. However, the overrepresentation of boys
among highly intelligent children is due significantly to the greater
dispersion of boy’s scores (Arden and Plomin 2006). Here, the salient
difference between boys and girls is not just the location of their test
score distributions, but the spread of those distributions too. Comparing
distributions across groups helps enrich the account of group differences
beyond stylized facts about the difference of means.

In research on inequality, the substantive significance of the
residual was considered in Jencks’s discussion of the income distri-
bution (Jencks et al. 1972). For Jencks, the large residual variance in
regressions of incomes results from workers’ unmeasured skills and
luck. An appealing personality and athletic talent are offered as exam-
ples of unmeasured skills. Luck might include “chance acquaintances
who steer you to one line of work rather than another, the range of jobs
that happen to be available in a particular community when you are
job hunting, . . . and a hundred other unpredictable accidents” (Jencks
et al. 1972:227). The influence of luck on income inequality might be
reduced through insurance, Jencks argues, suggesting that luck might
also be described as income insecurity.

A similar interpretation of the residual variance is provided in
recent research on U.S. income inequality. The growth of U.S. inequality
in the 1980s and 1990s was marked by a steady increase in the resid-
ual variance in regressions of earnings on experience and schooling.
Labor economists argued that growth in within-group inequality re-
flected rising returns to unobserved skills and compositional changes
that multiplied the numbers of high-skill workers with highly variable
incomes (Katz and Murphy 1992; Lemieux 2006). Others, sociologists
and economists, countered that increasing within-group inequality re-
sulted from workers’ increasing exposure to competitive forces in the
labor market (DiNardo, Fortin, and Lemieux 1996; Massey 2007).
Institutions such as the minimum wage, labor unions, and the ca-
reer ladders of large firms made income more secure and sheltered
wages from market forces. As these institutional protections eroded
through the 1970s and 1980s, within-group inequality in earnings in-
creased. McCall (2000) thus refers to the “deinstitutionalization” of
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the American labor market, and Sørensen (2000) points to the elimi-
nation of labor market rents as a source of increasing income insecu-
rity. Consistent perhaps with rising returns to unobserved skills and
rising economic insecurity, increased within-group inequality has also
been found to be a driver of inequality in China during the period of
rapid market transition from the late 1980s to the mid-1990s (Hauser
and Xie 2005). Theories of unobserved skill and labor market dein-
stitutionalization depart from accounts of between-group inequality
by claiming that the residual variance is larger for some groups than
others.

Sociological research on within-group inequality has taken resid-
ual standard deviations and other measures of within-group inequality
as dependent variables for regression. McCall’s (2000) study of labor
market institutionalization took a two-stage approach, first regressing
log incomes on demographic covariates. The residuals from this first-
stage regression were used to form residual standard deviations for
metro areas that were then regressed on metro-level measures of em-
ployment and industry structure. Sørensen and Sorenson (2007) also
took a two-stage approach in their analysis of Danish data. Obtain-
ing residuals from a regression log wages, they calculated log resid-
ual standard deviations for local areas that were regressed on mea-
sures of the competitiveness of local product markets. In contrast to
the small-area analysis, Kim and Sakamoto (2008) regress Gini in-
dexes of occupational wage inequality on occupation-level predictors.
In all these analyses, within-group inequality is viewed as the prod-
uct of macro-level predictors. Thus variables measured at the level
of occupational groups or metro areas, for example, have been writ-
ten as predictors of within-group inequality. Estimation proceeds in
two stages where residuals are calculated from a first stage regression,
and residual dispersion is regressed on macro predictors in the second
stage.

We next introduce a model that jointly estimates the effects of pre-
dictors on between-group and within-group inequality. Jointly fitting
within-group and between-group effects takes us beyond macro-level
studies of within-group inequality in two ways. First, our model allows
for the effects of micro-level and macro-level variables on within-group
inequality. Second, by jointly estimating between-group and within-
group coefficients, inferences about one set of coefficients also incorpo-
rate uncertainty about the other.
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3. FORMALIZING AND ESTIMATING THE MODEL

For observation i (i = 1, . . . , n) on a dependent variable, yi , the variance
function regression writes the mean, ŷi , and the variance, σ 2

i , both as a
function of covariates,

ŷi = x′
iβ

log σ 2
i = z′

iλ,

where xi is a K × 1 vector of covariates for the mean, and zi is a J ×
1 vector of covariates (possibly equal to xi ) for the variance.1 In this
model, a coefficient βk has the usual interpretation, describing the aver-
age difference in y associated with a one-unit change on an independent
variable, xk. Early proposals viewed the variance coefficients, λ, as a di-
agnostic for heteroscedasticity (Cook and Weisberg 1983). In studying
inequality, the λ coefficients are substantively interesting, describing
the association of covariates with within-group inequality. A variance
coefficient λ j is interpreted as the difference in the log variance associ-
ated with a unit change in z j . We are familiar with a single observation,
yi having a conditional mean given observations on independent vari-
ables, xi , but the idea of a conditional variance for a single observation
may be less intuitive. In this case, the model describes not only where
yi will fall on average, but how far yi will fall from this average value,
given zi . From a substantive viewpoint, the model formalizes the idea
that values of xi and zi are associated not just with high or low values
of yi but also with the variability or unpredictability of yi .

The variance function model clearly relaxes some of the assump-
tions of the usual linear regression. Unlike the constant variance linear
regression, the variance function model is heteroscedastic, allowing the
residual variance to depend on covariates. Though the variance func-
tion regression is relatively general, the model assumes that the mean
and variance are linear functions of covariates. The mean and variance
of yi are also assumed to be independent, conditional on xi and zi .
The yi are also assumed to be independent. Each of these assumptions
could be relaxed by allowing for a more general functional form for the

1 If yi is positive, it is often useful to transform the dependent variable to
the log scale yielding a scale invariant measure of inequality, the variance of log yi .
We discuss this in greater detail below.
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regression relationships, or by specifying a more complex structure for
the covariance matrix of yi . The linearity of the mean and variance func-
tions could be relaxed by adding nonlinear terms to the regression or
by writing the mean and variance as nonlinear in the parameters. The
independence assumption for yi could be relaxed by allowing cross-
correlation terms in the covariance matrix or by adding random effects
in the mean regression. Correlations between the mean and variance
could be allowed by writing the variance as a function of ŷi .

Variance function regressions have a relatively long history in
statistics and econometrics and were originally motivated by paramet-
ric tests for heteroscedasticity (Anscombe 1961; Park 1966; Cook and
Weisberg 1983). Joint maximum likelihood estimation of the mean and
variance coefficients was developed in subsequent studies (Harvey 1976;
Aitkin 1987; Verbyla 1993). Though we know of no research with these
models in sociology, there are recent applications in the sciences and
social sciences that study the effects of covariates on the variance. Agri-
cultural studies have recently examined variability in the survival rates
of fish populations, and modeled the variance of crop yields (Minto,
Myers, and Blanchard 2008; Edwards and Jannink 2006). In the social
sciences, economists have studied predictors of retail prices and political
scientists have analyzed the variance of vote choice in referenda (Lewis
2008; Selb 2008). In all these studies, the structure of heteroscedasticity
was of key scientific interest.

3.1. Estimation

Several methods have been proposed to estimate the variance function
regression. First, a simple two-stage approach uses standard software to
fit a linear regression, then a generalized linear model to the transformed
residuals (Nelder and Lee 1991). There are two steps involved in this
method:

1. Estimate β with a linear regression of yi on xi . Save the residuals,
êi = yi − x′

i β̂, where β̂ is the least squares estimate.
2. Estimate λ with a gamma regression of the squared residuals, ê2

i , on
zi , using a log link function.

The gamma regression is a type of generalized linear model for pos-
itive right-skewed dependent variables. The regression can be fit with
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standard software such as the glm command in Stata or GENMOD in
SAS. The point estimates with this method are consistent, but the stan-
dard errors are incorrect. In particular, the standard errors for the
estimates of λ take no account of the uncertainty in β, and estimates of
β are inefficient because they ignore heteroscedasticity in yi .

Second, maximum likelihood estimates are obtained by iterating
the two-stage method (Aitkin 1987). In addition to the assumptions
above, if we assumed that yi is conditionally and independently normal
with mean ŷi and variance σ 2

i , the contribution of observation i to the
log likelihood is

L(β, λ; yi ) = − 1
2

[
log

(
σ 2

i
)
+ (yi − ŷi )2

/
σ 2

i
]

= − 1
2

[
z′

iλ + di exp(−z′
iλ)

]
,

where d i is the squared residual, (yi − ŷi )2. There are four steps needed
to obtain the maximum likelihood estimates:

1. Fit a linear regression of yi on xi , yielding the estimated coefficients,
β̂, and residuals, êi = yi − x′

i β̂.
2. Fit a gamma regression with a log link of ê2

i on zi , yielding current
estimates λ̂. Save the fitted values, σ̂ 2

i = exp(z′
i λ̂).

3. Fit a weighted linear regression of yi on xi , with weights, 1/σ̂ 2
i .

Update the residuals, êi , and evaluate the log-likelihood.
4. Iterate steps 2 and 3 to convergence, updating β̂ and êi from

the weighted linear regression, and λ̂ and σ̂ 2
i from the gamma

regression.

Like many generalized linear models, the gamma regression is com-
monly fit by iteratively weighted least squares. If coefficients from the
previous iteration are used as start values, computation can be speeded
by fitting just one step of the gamma regression (Smyth, Huele, and
Verbyla 2001:164). Like the two-stage estimator, ML estimation can
be performed with standard software for generalized linear models. (A
Stata macro is given in Appendix A.)

The maximum likelihood estimator may perform poorly in
small samples because variance estimation does not adjust for degrees
of freedom and a biased score vector is used for estimation. A re-
stricted maximum likelihood (REML) estimator based on the marginal
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likelihood for λ produces estimates that are less biased in small samples
(Smyth, Huele, and Verbyla 2001). Unlike the two-stage and ML estima-
tion, REML estimation requires specialized calculations. Smyth (2002)
describes an efficient REML algorithm that has been implemented
in R.

The variance function regression can also be placed in a Bayesian
framework. Bayesian analysis offers two advantages. First, in small
samples, the λ coefficients in the variance equation may be skewed and
inference based on the normal distribution will be inaccurate. Nonnor-
mality in the posterior distribution will be revealed by simulation from
the Bayesian posterior distribution. Second, some analyses, like the
variance decomposition below, will focus not on the model coefficients
themselves, but on nonlinear functions of the coefficients. Output from
the Bayesian posterior simulation can be used to construct inferences
for these functions of model parameters.

The Bayesian model combines the normal likelihood for yi with a
prior distribution for the coefficients, β, and a hierarchical prior for the
variance coefficients, λ. For a dependent variable, yi , with predictors xi
for the mean and zi for the variance, the Bayesian model can be written
as

yi ∼ N(ŷi , σ
2
i ), where

ŷi = x′
iβ and log σ 2

i = ziλ,

with prior distributions,

β ∼ N(b, V)

λ ∼ N(g, U)

Uj j ∼ Gamma−1(u0, u1).

A noninformative prior sets the prior mean vectors, b and g, all to
zero. The K × K prior covariance matrix, V, is diagonal with large
prior variances, say 106. To help ensure the sample data dominates
estimation of the variance coefficients, λ is given a hierarchical prior.
The J × J covariance matrix, U , is diagonal and the prior variances
follow an inverse Gamma distribution with hyperparameters, u0 = .001
and u1 = .001. (We also experimented with a nonhierarchical prior on λ

though this approach performed poorly in small samples.) The Bayesian
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model can be estimated with MCMC software such as BUGS. (BUGS
code is given in Appendix B.)

3.2. Comparing Estimation Methods

The four estimation methods—two-step, ML, REML, and Bayes—
vary in ease of application. The two-step and ML methods can be fit
with standard software, while REML and Bayesian estimation require
specialized calculations. Do the four methods perform comparably?

We performed a Monte Carlo experiment to compare two-stage,
ML, and REML, and Bayesian estimators. This experiment was based
on one covariate, xq , a vector consisting of q replicates of x′ = [1, 2, . . . ,
10]. The dependent variable, yi was generated from

yi ∼ N
(
ŷi , σ

2
i
)
,

where ŷi = .1 + .1 × xqi , and σ 2
i = exp(.3 + .3 × xqi). We generated yi

for q = 5 and 50, corresponding to sample sizes n = 50 and 500. The
four estimators were applied to each data set of xqi and yi . Estimates
were obtained for 2000 replications at each sample size.

The experimental results are reported in Table 1. With the small
sample, n = 50, biases for all estimators are generally modest. However,
for the intercept of the variance function, λ0, bias of the MLE is larger
than for the other estimators by a factor of 2 to 5. Though we might
expect the prior distribution to influence estimates in small samples,
bias in the Bayesian analysis is similar to that for REML. The ad-
vantages of likelihood-based approaches (including Bayes) can be seen
by comparing the sampling variance of point estimates. The sampling
variance of β with the two-stage estimator is nearly twice as large as
the other methods, unsurprising given the inefficiency of OLS in the
presence of heteroscedasticity. The performance of inferential statis-
tics is measured by how frequently nominal confidence intervals cover
the known regression coefficients. Nominal confidence intervals for the
two-stage and ML estimator are often too optimistic in small samples,
overstating coverage rates. REML and Bayes yield uniformly more ac-
curate frequentist inference in small samples. REML standard errors
are slightly optimistic, and Bayesian standard errors are slightly pes-
simistic, with nominal intervals being long, given their coverage rates.



304 WESTERN AND BLOOME

TABLE 1
Results from a Monte Carlo Experiment for Two-stage, ML, REML, and

Bayesian Estimators of a Variance Function Regression

β 0 β 1 λ0 λ1

Bias of Point Estimates, n = 50
Two-stage −.024 .004 −.017 −.009
ML −.009 .001 −.100 .003
REML −.007 .000 −.045 .000
Bayes −.011 −.001 −.042 .006

Sampling Variance of Point Estimates, n = 50
Two-stage .538 .030 .202 .005
ML .312 .018 .212 .005
REML .312 .018 .213 .005
Bayes .312 .018 .213 .005

Coverage Rate of 95% Interval, n = 50
Two-stage .986 .914 .918 .926
ML .945 .939 .906 .917
REML .939 .940 .945 .945
Bayes .956 .960 .962 .969

Bias of Point Estimates, n = 500
Two-stage .002 −.001 −.002 −.001
ML .001 −.001 −.011 .000
REML .001 −.001 −.004 .001
Bayes −.001 −.001 −.001 .000

Sampling Variance of Point Estimates, n = 500
Two-stage .053 .003 .020 .001
ML .029 .002 .020 .001
REML .029 .002 .020 .001
Bayes .029 .002 .020 .001

Coverage Rate of 95% Interval, n = 500
Two-stage .989 .920 .938 .944
ML .950 .944 .938 .942
REML .950 .944 .943 .943
Bayes .950 .945 .958 .950

Note: For each sample size, n = 50 and n = 500, 2000 Monte Carlo samples were
drawn. BUGS code for the Bayesian estimation is reported in the Appendix B.

The performance of all the estimators improves as sample size
increases. With n = 500, there is very little bias in the point estimates
of either β or λ. As sample sizes increase by a factor of 10, sampling
variances decrease in similar proportion. The two-stage estimates of β

(OLS estimates) remain relatively inefficient compared with the other
methods that account for heteroscedasticity. The sampling variance
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of all estimators are similar for the variance coefficients, λ. Standard
errors and confidence intervals also tend to be more accurate with large-
sample sizes. Coverage rates for the two-stage and ML estimators are
slightly optimistic on average. By contrast, nominal coverage rates for
REML and Bayesian intervals are almost exactly equal to their true
rates.

The Monte Carlo experiments show that Bayesian and REML
estimators, at these parameter values, perform better in small samples
than ML and two-stage methods. With n = 50, the two-stage estimator
provides poor estimates of the mean coefficients, β, and maximum like-
lihood poorly estimates the variances coefficients, λ. The performance
of all estimators improves as sample size increases, for n = 500. The two-
stage estimator is clearly the most inefficient. It can be improved with
an additional weighted least squares step to estimate β with weights
1/σ̂ 2

i , estimated from the gamma regression on the log of the squared
OLS residuals. Bayes and REML perform consistently better than the
other two methods. Though the computational cost of Bayesian estima-
tion is far higher than all the other methods, outputs from the Bayesian
posterior simulation allow inference for a variety of quantities derived
from the parameter estimates. These inferences are illustrated in the
decomposition below.

4. APPLICATION I: INCARCERATION AND EARNINGS
INSECURITY

In the context of increasing incarceration rates in the United States,
researchers have recently examined the effects of imprisonment on the
earnings and employment of ex-offenders (Kling 2006; Western 2002;
Pager 2003). Western (2006) examined the effects of incarceration on
annual earnings, using panel data from the 1979 cohort of the Na-
tional Longitudinal Survey of Youth (NLSY79; Center for Human Re-
source Research 2004). Previous research has generally studied whether
earnings decline, on average, after an offender is released from prison.
Because the formerly incarcerated mostly find work in the secondary
sector of the labor market in which job tenure is relatively short, incar-
ceration likely affects not only the average level of earnings but also the
variability of earnings.

We illustrate the variance function regression with a model of
the mean and variance of log earnings for a sample of prisoners and
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TABLE 2
Descriptive Statistics for an Analysis of the Effects of Imprisonment on Annual

Earnings Among Young Men Interviewed in Prison

Before After
Imprisonment Imprisonment

Log annual earnings 9.10 9.05
Variance of log earnings 1.30 1.74
Work experience (weeks per year) 30.76 25.06
Years of schooling 10.78 10.92

Respondent-years 1718 1970
Number of respondents 517

Source: From the National Longitudinal Survey of Youth 1983–2000 (Center for
Human Resource Research 1979).

ex-prisoners. We analyze data on annual earnings from the NLSY79
for male respondents who are interviewed in prison at some time from
1983 to 2000. Descriptive statistics show that 517 male respondents were
interviewed at least once in prison after 1983 (Table 2). Log annual earn-
ings are slightly lower on average after respondents are released from
prison. The variance of earnings is also larger after incarceration. Key
covariates include work experience and years of schooling. Work expe-
rience is measured as the cumulative mean of average weeks worked in
a year. Work experience drops significantly among ex-prisoners. Years
of schooling is slightly higher for ex-prisoners reflecting additional edu-
cation obtained after release from prison. The descriptive statistics also
indicate that each NLSY respondent who is imprisoned contributes an
average of seven interviews to the sample.

In this analysis we fit fixed effects to the model for the mean to
account for unobserved heterogeneity across respondents. Fixed effects
are fit by subtracting the respondent-level means from the dependent
and independent variables. We also estimate the residual variance as
a function of the mean-deviated independent variables. Parameterized
this way, the intercept term from the variance function regression ap-
proximates the average log residual variance. The variance function
coefficients will vary depending on whether the mean-deviated or raw
predictors are used.

The effects of imprisonment on earnings are captured by two
predictors. The effect of interest—the effect of incarceration on the
earnings of those released from prison—is estimated with a dummy
variable that scores zero in all years up to release from prison, and one
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TABLE 3
Variance Function Regression Results for a Fixed Effects Analysis of Log

Earnings Among Incarcerated Men, NLSY79, 1983–2000

REML Bayes

β λ β λ

Intercept .086 −.147 .085 −.149
(.018)∗ (.027) (.018) (.025)

Previously imprisoned −.326 .464 −.329 .435
(.056) (.086) (.056) (.078)

Currently imprisoned −.460 .196 −.462 .178
(.050) (.076) (.051) (.071)

Years of schooling .041 −.119 .038 −.107
(.032) (.050) (.032) (.042)

Work experience .010 −.017 .010 −.017
(.003) (.004) (.003) (.004)

Note: Model for the mean and variance of log annual earnings also included the
effects of age, local area unemployment, enrollment status, region, urban residence, drug use,
union membership, public sector employment, and six industry categories. N = 3, 688, from
517 respondents.

∗Standard errors in parentheses.
Source: From the National Longitudinal Survey of Youth 1983–2000.

thereafter. Because self-reported earnings tend to be very low in the
years a respondent is incarcerated, we also introduce a dummy variable
indicating current imprisonment status.

Like the Monte Carlo results, REML and Bayesian estimates of
the regression results are very similar in the NLSY (Table 3). Our inter-
est focuses on the mean and variance of log earnings for men who have
been incarcerated. The REML estimate indicates incarceration reduces
average annual earnings by about 30 percent (1 − e−.326 = .278). The
Bayesian estimate of this effect and its standard error are almost identi-
cal. The variance function coefficients show that the residual variance in
log earnings is higher after incarceration than before. With the REML
estimate, the residual variance of earnings rises by about 60 percent
(e0.464 = 1.590). The Bayesian point estimate is somewhat smaller, but
tells a similar substantive story, that men who have been incarcerated
experience greater variability in earnings.

Against the effects of imprisonment, schooling and work ex-
perience, which are associated with higher average earnings, are also
associated with less earnings variability for this sample of predomi-
nantly low-skill, crime-involved men. Point estimates suggest that each
year of schooling is associated with a 10 percent reduction in the
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residual variance of earnings inequality. Each week of work experience
is associated with a 1.7 percent reduction in the variability of earnings.

In sum, in this sample of prisoners and ex-prisoners in the NLSY,
more skilled respondents tend to have higher than average earnings and
less earnings variability. The very low-skilled, including ex-prisoners,
have lower than average earnings and greater variability in earnings.
These results suggest greater earnings insecurity among the less-skilled
and less-experienced. The high variance of earnings among low-skill
workers, revealed by the variance function analysis, is unusual compared
with the general population where high-skill workers are often found
to have greater variance of earnings.

5. DECOMPOSING TRENDS IN INEQUALITY

While the parameters of the variance function regression may be sub-
stantively interesting, they can also be used to study trends in inequality.
For a positive variable, Y (Y > 0), inequality is defined as the variance
of y = log Y. In the log scale, the variance is a scale invariant measure of
inequality: multiplying the raw variable by a constant, kY , adds a con-
stant on the log scale, k + y, leaving the variance of y unchanged. With
a regression on the log scale, on yi , the variance function coefficients
are also scale invariant. Multiplying Y by a constant shifts only the
intercept, β 0, of the regression for the mean in the log scale. The slope
coefficients for the mean and the residuals are unchanged, leaving all
the variance coefficients unchanged by a change in scale. The variance
of the log, V = V(log Y), is also functionally related to several common
measures of inequality including the Gini index, G, where

G = 2$([V/2]1/2) − 1,

and $(·) is the cumulative distribution function of the standard normal
distribution (Allison 1978:874). We explore the empirical relationship
between the variance of the log and the Gini index in the application
below.2

We use variance function regressions to study trends in inequal-
ity by elaborating a standard variance decomposition recently applied

2 For log-normal data, Y,
√

V is a general inequality parameter of the
kind described by Jasso and Kotz (2008).



VARIANCE REGRESSIONS FOR STUDYING INEQUALITY 309

by Lemieux (2006) to men’s hourly wages. For this decomposition, the
data are organized in a table and each observation is assigned to a
cell in the cross-classification of all covariates. With k covariates, with
levels c1, c2, . . . , ck, the covariates define a total of C = c1 × c2 ×
. . . ck cells. For example, an earnings analysis might include covariates
for education measured at three levels (say less than high school, high
school, and greater than high school) and work experience (less than 5
years, 5 to 15 years, and greater than 15 years). The population could
then be described by an education-by-experience table, defining 3 × 3
= 9 groups. With data configured in this way, between-group inequal-
ity describes differences across education-experience cells, and within-
group inequality refers to heterogeneity within education-experience
cells.

More formally, for an outcome, yi = log Yi , inequality is mea-
sured by the variance, V . The variance can be expressed as a weighted
sum of group means and variances that yield between-group and within-
group components:

V = B + W,

=
C∑

c=1

πcr2
c +

C∑

c=1

πcσ
2
c ,

where the π c are cell proportions, rc = ŷc − ȳ are deviations of the
group means from the grand mean, and the σ 2

c are the variances of yi
for each cell.

With data at two points in time, t = 0, 1, we write the cell
proportions, π tc, cell residuals, r tc, and cell variances, σ 2

tc. The change
in the variance of y from t = 0 to t = 1 can be decomposed into changes
in the between-group and within-group variance. The change in the
between-group variance can be written

B1 − B0 =
C∑

c=1

(π1c − π0c)r2
1c +

C∑

c=1

(
r2

1c − r2
0c

)
π0c,

where the first term,
∑

c(π1c − π0c)r2
1c, describes a compositional

effect—the change in variance due to shifts in the relative size of pop-
ulation subgroups, π 1c − π 0c. The second term,

∑
c(r2

1c − r2
0c)π0c, is

the between-group effect—the change in the variance due to shifts in
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group means, r2
1c − r2

0c. The change in the within-group variance can
be similarly written

W1 − W0 =
C∑

c=1

(π1c − π0c)σ 2
1c +

C∑

c=1

(
σ 2

1c − σ 2
0c

)
π0c.

With these expressions, changes in the variance of y can be written as
the sum of three components:

V1 − V0 = δC + δB + δW

where the total compositional effect reflecting shifts in the size of pop-
ulation subgroups is

δC =
C∑

c=1

(π1c − π0c)
(
r2

1c + σ 2
1c

)
,

the between-group effect is

δB =
C∑

c=1

π0c
(
r2

1c − r2
0c

)
,

and the within-group effect is

δW =
C∑

c=1

π0c
(
σ 2

1c − σ 2
0c

)
.

With a time series, t = 0, . . . , T, it is also useful to plot adjusted variances
that fix at t = 0 either the population proportions

VC
t =

C∑

c=1

π0c
(
r2

tc + σ 2
tc
)
,

the group means

VB
t =

C∑

c=1

πtc
(
r2

0c + σ 2
tc
)
,
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or the group variances,

VW
t =

C∑

c=1

πtc
(
r2

tc + σ 2
0c

)
.

These adjusted variances can be interpreted as (1) the variance we
would observe, VC

t , if the composition of the population had remained
unchanged from t = 0, (2) the variance, VB

t , we would observe if group
means were unchanged, and (3) the variance we would observe, VW

t , if
within-group variances remained unchanged. In principle, neither the
variance decomposition nor the adjusted variances require a regression
model. As in Lemieux’s (2006) decomposition, the analysis requires
only cell proportions, cell means, and cell variances for all years.

Variance function regressions develop the standard decomposi-
tion in three ways. First, we are often interested in studying shifts in in-
equality associated with individual covariates. Indeed regression meth-
ods have often been used to decompose the change in variance in this
way (e.g., Hauser and Xie 2005; Lam and Levison 1992). The extension
here involves writing the residual variance as a function of covariates,
allowing the researcher to isolate changes in between-group and within-
group inequality associated with individual variables. Second, data may
be sparse, so cells observed in some years may be unobserved in others.
Regression estimates can be used to impute means and variances for
empty cells, ensuring that adjusted variances are always defined. More
generally, a model for cell means and variances will smooth the data,
reducing the influence of outlying cells with few observations. Finally,
with Bayesian posterior simulation, bounds can easily be constructed
for decomposition quantities. (Posterior simulation for the usual ho-
moscedastic regression could also be used to construct inferences for
nonstandard decomposition quantities.)

The effect of predictor x on changes in inequality in y can be
quantified with an adjusted variance that fixes a regression coefficient
at its value at the baseline, t = 0. At time t, we have an n × k matrix of
covariates, Zt, and a variable of interest given by the n × 1 vector, xt.
With an n × 1 vector of observations on the dependent variable, yt =
log Yt, write a variance function model:

ŷt = Ztγ t + βt xt, and

log σ 2
t = Ztθ t + λt xt.
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To assess the effects of x on between-group inequality, construct the
adjusted variance

Vβ
t =

C∑

c=1

πtc
(
r̃2

tc + σ 2
tc
)
.

With zc and xc indicating cell c, the adjusted between-group residual,
r̃tc = ỹtc − ȳt, is calculated from

ỹtc = z′
cγ t + β0xc.

Here, the adjusted between-group mean at time t is based on all co-
efficients at time t, except for the variable of interest, x, where we fix
the coefficient at the baseline, t = 0. The adjusted variance, Vβ

t , can
be interpreted as the variance we would observe if the between-group
coefficient for x had remained fixed at the baseline time point, t = 0.
Similarly, an adjusted variance that describes the effect of x on within-
group inequality is given by

Vλ
t =

C∑

c=1

πtc
(
r2

tc + σ̃ 2
tc
)
.

where σ̃ 2
tc = exp(z′

cθ t + λ0xc). The adjusted variance, Vλ
t , can be inter-

preted as the variance we would observe if the effects of x on within-
group inequality had remained fixed at the baseline time point, t = 0.
For example, a large literature on increasing earnings inequality in the
United States examines the growth in relative earnings of college grad-
uates. Adjusted variances, Vβ

t , can show the contribution of the growth
in relative earnings of college graduates to the overall rise in inequal-
ity. Theories of labor market deinstitutionalization predict increasing
earnings inequality among poorly educated workers (e.g., McCall 2000;
Sørensen 2000). Within-group inequality among low-skill workers can
be studied with Vλ

t , which fixes educational differences in the residual
variance at the baseline time point.

The method can be generalized to study a wide range of effects.
For example, interest may focus on the effects of covariates on only
between-group or within-group inequality. In this case, just the relevant
β or λ coefficients would be fixed at the baseline time point. Adjusted
variances could also be constructed to study the effects of several co-
variates instead of just one.
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Compositional changes can be studied by fixing the marginal
distribution of individual covariates at the baseline time point. At time
t, for each cell c, the covariate xt has marginal probability p(xtc) = ptc.
For example, let xt be a dummy variable with a mean of .7. Then ptc=.3
for cells in which xtc = 0, and ptc = .7 for cells in which xtc = 1. The
effects of compositional shifts in xt on inequality can be estimated by
an adjusted set of cell proportions,

π̃1c = (p0c/p1c)π1c.

Again, our analysis has parallels in Lemieux’s (2006) analysis of compo-
sitional effects on the residual variance of men’s wages. Lemieux (2006)
proposes a reweighting scheme based on the joint distribution of all
covariates, not a single covariate of interest. In the current approach,
adjusted cell proportions preserve the joint distribution of the popu-
lation conditional on xt but inherit the marginal distribution of xt at
t = 0. The adjusted cell proportions are then used to form adjusted
variances,

Vπ
t =

C∑

c=1

π̃tc
(
r2

tc + σ 2
tc
)
.

Similar to the adjusted variances based on fixed regression coefficients,
Vπ

t might be interpreted as the inequality we would observe if the
marginal distribution of xt were unchanged from t = 0.

Because the decomposition equations are very flexible, fixing
weights, coefficients, or variance components at different time points
does affect results. Fixing the end time point instead of the start time
point, for instance, might lead to different substantive conclusions.
Sometimes, decisions about fixing quantities will have a strong sub-
stantive motivation. Still, researchers should explore this sensitivity in
data analysis.

6. APPLICATION II: DECOMPOSING TRENDS
IN HOURLY WAGES

A large research literature has examined the growth in inequality in
men’s hourly wages (for reviews and recent contributions see Acemoglu
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FIGURE 1. Trends in earnings inequality, full-time, full-year men, aged 25 to 55, 1970–2005,
March Current Population Survey.

2002; Autor, Katz, and Kearney 2005; Lemieux 2006). In this applica-
tion we study inequality in the annual wage and salary income for men
aged 25 to 55 using data from the March Current Population Survey
1971 to 2006. We count only the earnings of men working full-time
and year-round, and only those who report earning at least $100 in a
given year. All earnings data have been adjusted for inflation to 2001
dollars. Inequality in men’s annual earnings from 1970 to 2005 is shown
in Figure 1. In our variance function analysis, inequality is measured
by the variance in log annual earnings. The variance of log earnings
is compared with the ratio of 90th to the 10th percentile in raw earn-
ings. The variance and 90/10 ratios have been scaled to equal 1 in 1970.
Earnings inequality increases in similar proportion with both measures.
The third series in Figure 1 shows the Gini index for annual earnings.
Because the Gini is a square root function of the variance of the log, the
variance increases more quickly than the Gini when sufficiently large.3

3 Analysis of the derivative, dG/dV shows that the variance increases
more quickly than the Gini (dG/dV < 1) when V > .075 approximately.
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Research has focused on earnings inequality by levels of ed-
ucation and the growth of the residual variance in earnings. Studies
of educational differences in incomes focus on the rising relative pay
of college-educated workers. In 1970, college graduates earned about
35 percent more than high school graduates. By 2006, the wage ad-
vantage of college graduates had increased to 60 percent. Much of the
empirical research analyzed trends in the education gradient, estimated
with a regression of log earnings on years of schooling, typically con-
trolling for experience and other covariates (Levy and Murnane 1992;
Katz and Murphy 1992). The variance function analysis extends this re-
search by calculating the contributions to overall earnings inequality of
(1) between-group educational inequality in earnings, (2) within-group
educational inequality in earnings, (3) the educational composition of
the labor force. Groups in this analysis are defined by race, experience,
and education. The analysis synthesizes the emphasis in economic re-
search on between-group inequality by levels of education and soci-
ological emphasis on within-group inequality among low-education
workers.

With survey data on year t (t = 1970, 1971, . . . , 2005), a variance
function regression on log earnings is written as

ŷti = x′
tiγ t + e′

tiβ t, and

log σ 2
ti = x′

tiθ t + e′
tiλt,

where xti is a vector of dummy variables indicating race and ethnicity,
and experience categories, and eti is a 4 × 1 vector of dummy variables
coded for five educational categories: (1) less than tenth grade, (2) tenth
or eleventh grade, (3) high school graduate or equivalent, (4) some
college, and (5) four-year degree or more. Four adjusted variances can
be constructed with this model to study the effects of education on the
trend in earnings inequality. The first fixes between-group educational
inequality in earnings at the 1970 level:

Vβ
t =

C∑

c=1

πtc
(
r̃2

tc + σ 2
tc
)
, (1)

where r̃tc = ỹtc − ȳt, ỹct = x′
cγ t + e′

cβ1970, and xc and ec are design vec-
tors corresponding to cell c of the race by experience by education table.
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The second adjusted variance fixes within-group educational inequality
in earnings:

Vλ
t =

C∑

c=1

πtc
(
r2

tc + σ̃ 2
tc
)
,

where log σ̃ 2
tc = x′

cθ t + e′
cλ1970. The third adjusted variance combines

the effects of educational inequalities in within-group and between-
group inequalities:

Vβλ
t =

C∑

c=1

πtc
(
r̃2

tc + σ̃ 2
tc
)
.

The fourth adjusted variance fixes the marginal distribution of educa-
tion at the 1970 level:

Vπ
t =

C∑

c=1

π̃tc
(
r2

tc + σ 2
tc
)
,

where π̃tc = (p1970c/ptc)πtc where ptc is the marginal probability of
education in year t in cell c.

Figure 2 shows the effects of education on the trend in U.S.
earnings inequality. The top panel compares three adjusted variances
that fix education coefficients at the 1970 level. Observed inequality
in earnings increases by 60 percent from 1970 to 2005, but the trend
in Vβ

t indicates that inequality would have increased by only 45 per-
cent if the educational inequality in mean earnings had remained fixed
at the 1970 level. Less research has studied educational differences in
within-group inequality (though see Juhn, Murphy, and Pierce 1993;
Lemieux 2006). Trends in Vλ

t show that differences in the within-group
variance across levels of education have affected the rise in U.S. earn-
ings inequality in similar magnitude to the growth in between-group
inequality. If the within-group and between-group effects of education
are added together, trends in Vβλ

t show that they explain about half the
growth in U.S. earnings inequality. Trends in Vπ

t illustrate the effect of
the educational composition of the workforce, as shown in Figure 2(b).
The adjusted variance tracks the observed variance, indicating that the
great increase in high school graduation rates and college attendance
has had little net distributional effect.
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FIGURE 2. (a) Observed variance of log earnings, and adjusted variances fixing within-
group and between-group education coefficients at 1970; (b) observed variance
of log earnings and adjusted variance fixing educational attainment at the 1970,
full-time, full-year men, aged 25 to 55, 1970–2005.
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FIGURE 3. Observed variance in log earnings, and adjusted variance fixing variance coeffi-
cients, λ, at 1970, full-time, full-year men, aged 25 to 55, 1970–2005.

Finally, Figure 3 shows the effects of trends in within-group
inequality. In this case the adjusted variance is obtained by fixing all
variance coefficients, θ and λ, at their 1970 level. With this adjusted
variance, earnings inequality increases by just 25 percent compared with
the observed increase of 60 percent. The adjusted variance indicates that
60 percent, (60 − 25)/60 = .58, of the increase in inequality in men’s
earnings in the United States is associated with the growth in within-
group inequality. In sum, although the effect of education on between-
group inequality has been the main focus of research, the variance
function analysis suggests that educational differences in within-group
inequality contributes at least as much, and the overall growth in within-
group explains more than half the rise inequality from 1970 to 2005.

The decomposition analysis can be taken further by reporting
inferences about key quantities. Often, inferences are not provided in
decomposition analyses, though sampling error is certainly present.
This seems partly driven by convenience. Inferential statistics for the
change in adjusted variances are nonstandard calculations, unavailable
in standard statistical packages. Still, the Bayesian analysis provides
draws from the posterior distributions for all the regression coefficients.
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TABLE 4
Observed and Adjusted Variances, Full-time, Full-year Men’s Log Annual

Earnings, CPS 1970–2005

Change from Percentage of
2005 1970 to 2005 Change Explained

Observed Variance .481 .179 -
(.004) (.004)

Adjusted variance, fixing at 1970:
Education effects, β .432 .131 27.2

(.004) (.004)
Education effects, β and λ .387 .085 52.5

(.006) (.006)
Educational attainment .500 .199 −10.8

(.006) (.004)
All within-group effects, θ and λ .371 .069 61.4

(.005) (.003)

Note: Standard errors in parentheses are calculated with MCMC posterior
simulation. March Current Population Surveys, 1971–2006.

Output from posterior simulation can be used to construct standard
errors and intervals for the decomposition quantities.

Draws from the posterior distribution of coefficients can be
plugged into the decomposition equation to obtain standard errors and
confidence intervals for the adjusted variance. In equation (1), we could
write Vβ

t (γ t, β 1970), indicating the dependence of the adjusted variance
on 1970 education coefficients and the race and experience coefficients
for year t. With draws from the posterior, written γ ∗

t and β∗
1970, a draw

from the posterior adjusted variance is obtained with the simulated co-
efficients, Vβ

t (γ ∗
t , β∗

1970). MCMC output consisting of D draws from the
posterior distributions for the mean and variance regression coefficients
yields D draws from the posterior adjusted variance. The standard error
of the adjusted variance is estimated by the standard deviation of the D
draws from the posterior. Inferences for the adjusted variances, Vλ

t and
Vπ

t , can be calculated in similar fashion, by plugging in the simulated
values of the regression coefficients, producing posterior draws from
the adjusted variance.

Table 4 reports the effects of the change in the education co-
efficients, β and λ, the compositional effects of changes in educa-
tional attainment, and the effects of changes in within-group inequal-
ity on the growth in earnings inequality from 1970 to 2005. Standard
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errors calculated from posterior simulation are reported in parentheses.
The change in variance is obtained by subtracting the observed 1970
variance from the 2005 observed and adjusted variance. To calculate
inference for the change in variance, subtract the posterior draws from
1970 variance from the posterior draws from the 2005 variance. Results
show that the standard errors are extremely small compared with the
change in variance indicating that the overall growth in inequality and
the growth in attributable education effects and within-group inequality
is unlikely to be due to sampling error.

Though our analysis is based on annual earnings for full-time,
full-year male workers, different data and samples may yield different
results. For example, Lemieux (2006) reports large composition effects
related to workforce aging in his decomposition analysis of within-
group inequality in hourly wages in the Outgoing Rotation Group files
of the CPS. We find little evidence of the composition effects of school-
ing and larger effects of schooling coefficients on between-group and
within-group inequality in the March CPS annual earnings data. This
divergence suggests the sensitivity of results to the range of plausible
design choices. The theoretical implications of the model, however, are
more important than these particular estimates: The variance itself can
be regarded as a target for explanation, and the sociological account
of the deinstitutionalization of the labor market points to the rising
earnings variance of low-skill workers. In this spirit, the analysis can be
extended by adding aggregate level covariates for industries or localities,
say, that measure this deinstitutionalization directly.

7. DISCUSSION

In this paper we proposed a variance function regression for studying
the level and trend in inequality. By writing a regression model for both
the mean and variance of a dependent variable, the variance function
regression treats within-group, or residual, inequality as a something
to be explained. In previous research on earnings, the within-group
variance was interpreted to reflect the influence of returns to unobserved
characteristics. Theories of inequality have also treated within-group
inequality as measuring risk or insecurity. Our analysis provides a way
of explaining variability in risk or insecurity in addition to the usual
account of between-group inequality. We also extended the model to a
variance decomposition of the change in inequality, where the variance



VARIANCE REGRESSIONS FOR STUDYING INEQUALITY 321

function allows us to study the effects of covariates on both within-
group and between-group inequality.

The model can be estimated using standard software. A two-stage
estimator—consisting of a least squares fit for the mean and a gamma
regression on the log squared residuals—provides accurate point esti-
mates. Maximum likelihood estimates can be obtained by iterating be-
tween the linear regression and the gamma regression. Bayesian MCMC
estimation yields draws from the full posterior distribution, producing
inferences about variance decomposition.

The model was illustrated in two applications: (1) an analysis
of earnings among incarcerated respondents in the NLSY79 and (2)
an analysis of earnings inequality among U.S. male workers from 1970
to 2005. The analysis of NLSY prisoners showed that incarceration
was associated with not only reduced earnings but also an increase in
the variability of earnings. Studying the 35-year trend in men’s earn-
ings inequality showed that half of the growth in inequality is due to
rising between-group and within-group inequality by levels of educa-
tion. Half of the growth in inequality is associated with the growth in
within-group inequality. Changes in the educational composition of the
male workforce was found to contribute little to the growth in earnings
inequality. Though these results are presented as illustrations, the vari-
ance function regressions have revealed new structure in the earnings
data requiring more detailed analysis.

Variance function regressions offer a more complete model of
inequality but researchers should carefully consider the model specifi-
cation and measurement for this two-equation analysis. Parameterizing
the mean and the variance may multiply specification errors. Speci-
fication errors in the model for the mean—perhaps due to omitted
variables or nonlinearities—obviously result in biased estimates of the
mean coefficients. In addition, however, because the residuals are biased
estimates of the true errors, coefficients for the variance will generally
be biased as well, even if the variance equation is correctly specified. If
the variance equation is misspecified but the mean equation is correctly
specified, the standard errors of mean regression coefficients will also
be biased. However, point estimates of the mean regression coefficients
will be unbiased, despite misspecification of the variance regression.4

4 In a correctly specified model for the mean, the errors will have zero
expectation ensuring the unbiasedness of the ML estimates of β.
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Measurement error in the dependent variable will also affect the inter-
pretation of the results. In particular classical measurement error will
bias the intercept of the variance equation, though other coefficients
will be unaffected. The variance coefficients will be biased, of course,
if measurement error in the dependent variable is correlated with the
independent variables. Indeed, the mean coefficients would be biased
too in this situation, just as in the usual linear regression.

The current model could be extended in several ways. In the
analysis of discrete outcomes such as counts or binary variables, the
mean and variance are often assumed to be functionally related. For
example, a binary dependent variable, yik, collected in clusters of size
m, yield a sum for each cluster, Yk =

∑
i yik, that is often assumed

to be binomial with expectation, E(Yk) = mp, and variance V(Yk) =
mp(1 − p), where p is the expectation over the whole sample. An over-
dispersion parameter is sometimes added to capture extra-Binomial
variation, V(Yk) = φmp(1 − p). A variance function model with a dis-
crete outcome might then write the overdispersion parameter, φ, as a
function of covariates. The model could also be extended in a Bayesian
framework. The Bayesian model could be elaborated to add random
components for both the mean and the variance. Where data are clus-
tered in small areas like counties or census tracts, for example, random
components in the variance function would allow variability in within-
group inequality beyond that explained by the covariates. Such models
could be estimated with MCMC methods for posterior simulation.

Regression analyses of inequality typically capture only differ-
ences between groups. In sociological applications, residual inequal-
ity tends to be very large in comparison to between-group inequality.
The substantive significance of this large residual variance tends to be
glossed either by appealing to the importance of regression coefficients
or dismissing residual variance as the combined effects of measure-
ment error and uncorrelated omitted variables. If overall inequality—
the overall spread of the dependent variable—is really the main sub-
stantive interest, the variance function regression provides a useful tool,
making the residual variance itself a target for analysis.

APPENDIX A: VARIANCE FUNCTION MLE’S IN STATA

The following Stata code takes a dependent variable, Y, a local macro
variable listing predictors for the mean, X, and another listing predictor
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for the variance, Z. The code monitors the log-likelihood and outputs
the parameter estimates.

reg Y ‘X’;
predict R, r; ∗ OLS resids;
gen R2=R ˆ2; ∗ squared resids for glm fit;
glm R2 ‘Z’, family(gamma) link(log); ∗ gamma reg on log(r2);
predict S2, mu; ∗ fitted variances, exp(Xb);
gen LOGLIK=−.5∗(ln(S2)+(R2/S2)); ∗ evaluating log likelihood;
egen LL0 = sum(LOGLIK); ∗ summing log likelihood;
di LL0;

∗Updating beta and lambda coefficients;
gen DLL=1; ∗ initialize change in loglik;
while DLL > .00001 {;
drop R;
quietly: reg Y ‘X’ [aw=1/S2]; ∗ WLS with variances as weights;
drop S2;
predict R, r; ∗ WLS resids;
replace R2=R ˆ2; ∗ squared resids for glm fit;
est store BETA; ∗ saving beta coefs;
quietly:
glm R2 ‘Z’, family(gamma) link(log); ∗ gamma reg on log(r2);
predict S2, mu; ∗ fitted variances, exp(Xb);
est store LAMBDA; ∗ saving lambda coefs;
replace LOGLIK=−.5∗(ln(S2)+(R2/S2)); ∗ evaluating log likelihood;
egen LLN = sum(LOGLIK); ∗ summing log likelihood;
di LLN;
replace DLL=LLN-LL0; ∗ assess convergence;
replace LL0=LLN;
drop LLN;

};
est table BETA LAMBDA, b se; ∗ table with coefs and se’s

APPENDIX B: BUGS CODE FOR VARIANCE FUNCTION
REGRESSION

The following BUGS code was used in the Monte Carlo experiment
reported in Table 1. The code fits a bivariate regression with dependent
variable, y, and a single predictor x, to simulate from the posterior
distribution of the mean coefficients, b0 and b1 and the variance coef-
ficients, lambda0 and lambda1.
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model {
for(i in 1:n) {

y[i] ∼ dnorm(mu[i], tau.y[i])
mu[i] <− b0 + b1∗x[i]
tau.y[i] <− 1/sigma2[i]
log(sigma2[i]) <− lambda0 + lambda1∗x[i]
}

lambda0 ∼ dnorm(0, tau.lambda0)
lambda1 ∼ dnorm(0, tau.lambda1)
tau.lambda0 ∼ dgamma(0.001, 0.001)
tau.lambda1 ∼ dgamma(0.001, 0.001)
b0 ∼ dnorm(0, 1.0E-6)
b1 ∼ dnorm(0, 1.0E-6)

}
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