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Abstract: Multicollinearity in linear regression is typically thought of as a problem of large standard
errors due to near-linear dependencies among independent variables. This problem can be solved
by more informative data, possibly in the form of a larger sample. We argue that this understanding
of multicollinearity is only partly correct. The near collinearity of independent variables can also
increase the sensitivity of regression estimates to small errors in the model misspecification. We
examine the classical assumption that independent variables are uncorrelated with the errors. With
collinearity, small deviations from this assumption can lead to large changes in estimates. We present
a Bayesian estimator that specifies a prior distribution for the covariance between the independent
variables and the error term. This estimator can be used to calculate confidence intervals that reflect
sampling error and uncertainty about the model specification. A Monte Carlo experiment indicates
that the Bayesian estimator has good frequentist properties in the presence of specification errors.
We illustrate the new method by estimating a model of the black-white gap in earnings.
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N a classic but now seldom-studied article published in The American Journal
of Sociology in 1968 entitled “Issues in Multiple Regression,” Robert Gordon
analyzed the problems involved in model specification in regression analysis when
variables are nearly collinear. He presents a particularly troubling example in which
two independent variables correlate at 0.80. These predictors correlate with the
dependent variable at 0.60 and 0.55. They have identical correlations with the other
predictors in the model. He reports that the ordinary least squares (OLS) estimates
for the standardized regression slopes for these two variables are, respectively,
0.38 and 0.13. Not surprisingly, he is disturbed that a small difference in the two
predictors’ correlation with the dependent variable, 0.60 versus 0.55, results in a
large difference in their estimated effects.

How are we to understand this example? Gordon considers two possibilities.
First, he notes that the predictors’ true correlations with Y might be equal and that
their observed difference might be due to sampling error. In this case, he observes
that sampling error should be reflected in the standard errors for the two coefficients.
In principle, the standard errors should be sufficiently large to indicate that the
two regression coefficients might be equal. More formally, a test of their equality
could be constructed. As numerous textbook authors have argued, however, when
predictors are collinear, one’s sample size may not be large enough to provide a test
of sufficient power to reject the null hypothesis of equality. The obvious (though
often infeasible) solution is to increase sample size.

Second, Gordon notes that even if 0.60 and 0.55 were the true correlations of the
two independent variables with the dependent variable, changing other predictors
that had different correlations with the two variables could substantially affect the
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estimates. The results may be sensitive to the model specification. This sensitivity
is due to collinearity, not sample size.

Specification sensitivity is worrying for two reasons. First, the sensitivity may
not be obvious because collinearity can be difficult to detect (Belsley 1991). De-
tection can be difficult in the presence of strong multiple—rather than bivariate—
correlations among predictors. Second, social scientists are usually uncertain about
the correct model specification. In practice, the true model is virtually never known
with certainty. A variety of models are usually consistent with a particular theory.

Within the traditional frequentist perspective, collinearity has been analyzed as
a problem of imprecise estimates or equivalently large standard errors resulting
from having weak or too little data.! Goldberger’s widely used textbook (1991)
describes at length how the problem of multicollinearity is analogous to the problem
of small sample size, or what he jokingly calls micronumerosity. Specifically, with
multicollinearity, sample data may be too uninformative to estimate regression
coefficients precisely. Consequently, some estimates may be nonsensical. From a
frequentist perspective, this is simply due to the fact that the confidence interval
associated with an estimate is so large that it includes unreasonable estimates. For
Bayesians, the researcher may have failed to include sufficient prior information
to restrict estimates to a realistic range (Leamer 1994). The cure for harmful mul-
ticollinearity is either additional information in the form of more sample data or
stronger priors (nonsample) information for the coefficients of interest (Belsley
1991).

The standard analysis of multicollinearity as simply weak or uninformative data
ignores Gordon’s second observation—that estimates from collinear data may be
highly sensitive to the model specification, even in large samples. This sensitivity
is not captured by traditional standard errors and is independent of the amount
of sample information. This article formally explores the consequence of model
misspecification in the linear regression model in the presence of multicollinearity.
Specifically, we develop Gordon’s insight that multicollinearity can create problems
not only when one has too little data but also when the model is misspecified. As
far as we are aware, with the exception of Mela and Kopalle (2002), this is not an
issue that has been formally analyzed in the research literature.> Our interest is
in situations where the research focus is on the relative and/or absolute size of
specific regression coefficients and the intent is to interpret regression coefficients
as estimates of the causal effects of variables. For example, we might be interested
in the effect of family background on occupational attainment or race’s effect on
earnings.

Model specification uncertainty is not easily analyzed from a traditional frequen-
tist perspective. For frequentists, models are either true or false. In the frequentist
framework, there is no possibility of specifying a model that is true with some
probability (cf. Leamer 1978; Draper 1994). Model misspecification, however, can
be analyzed in a frequentist perspective. Essentially, one assumes that there is a
true model and asks what the consequences are of estimating the wrong model.
A common example of this is found in textbooks on regression where the effects
of omitting an independent variable are analyzed. More general analysis is also
possible (e.g., White 1994).
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This article has two goals. First, from a frequentist perspective, we carry out
a simple analysis demonstrating the consequences of model misspecification in
the presence of multicollinearity. The critical insight is that multicollinearity can
enormously magnify the effects of model misspecification. A key implication,
counter to the traditional perspective, is that multicollinearity may be particularly
dangerous with large sample sizes. Here, one’s sampling standard errors may be
quite small, giving the researcher confidence in their estimates. In fact, however,
small changes in the specification of the model may radically change estimates.

Second, from a Bayesian perspective, we describe a method that allows for
model uncertainty. We almost never know the true model exactly: misspecifica-
tion is the norm, not the exception. How then should we deal with the potential
effects of misspecification in the presence of multicollinearity? In our approach, a
Bayesian prior distribution is used to propagate uncertainty about the correct model
specification through its standard errors. The Bayesian standard errors reflect both
uncertainty because of sampling error and uncertainty about the model. As a result,
the Bayesian standard errors are larger than the classical standard errors that reflect
only sampling variability.

In important respects, our approach challenges much of the traditional literature
on multicollinearity® Given that multicollinearity can produce imprecise estimates,
the traditional approach proposes methods to reduce standard errors. In fact, how-
ever, beyond adding information either by increasing the sample size or introducing
prior information, little can be done. In our view, traditional standard errors that
fail to reflect model uncertainty are too small, not too large. Such standard errors
may lead researchers to be unjustifiably confident about the precision of estimates.
This overconfidence may be most acute with large samples, exactly the situation in
which the traditional literature argues multicollinearity is less likely to be a problem
(Goldberger 1991).* Our goal is to construct standard errors that incorporate model
uncertainty and thus are necessarily larger than traditional sampling standard
errors.

The next section of the article presents a basic analysis of model misspecifica-
tion in the classical regression model. We demonstrate the sensitivity of classical
regression estimates to model misspecification when there is multicollinearity. The
following section develops a Bayesian solution to the problem of incorporating
specification uncertainty into a model. Next, we report results from a Monte Carlo
experiment that shows that the Bayesian regression can perform much better than
OLS in the presence of specification errors. Following this, we present an empirical
example. We conclude by arguing that it is important that we have methods that
incorporate specification uncertainty as well as sampling error into our analysis.
This is essential if we are to have confidence intervals that accurately reflect the
range of estimates that are consistent with the data.
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Model Misspecification and Multicollinearity

The “Classical” Linear Regression Model

In this article, we will only deal with the standard linear regression model:
y=Xb+e (1)

where y is an n x 1 vector consisting of observations on the dependent variable, X
is an n x k matrix of the k independent variables, b is a k x 1 vector of regression
coefficients to be estimated, and e is an n x 1 vector of unobserved errors that are
assumed to be independent, identically distributed, normal variables. Without
loss of generality, we will assume that both y and X have been centered to have
mean zero. Similarly, we will assume that the data are generated by simple random
sampling. Interest focuses on estimating the regression coefficients, b, in Equation
(1). Pre-multiplying each side of Equation (1) by X’ and rearranging terms yields,

X'y —X'e = X'Xb ()

Obviously, X'e cannot be estimated since e is unobserved. Note that Equation (2)
consists of k equations with 2k unknowns—the k regression coefficients, b, and the k
cross-products of the error term e with each of the columns of X. The cross-products
vector, X'e, equals the sample size, 1, times the covariance of e with each column of
X. Rearranging terms to solve for b yields:

b= (XX)"}(X'y - X'e) (3)

The coefficient vector, b, cannot be solved for explicitly in Equation (3) without
further assumptions. The least squares estimator starts by assuming that in expecta-
tion X’e = 0. OLS then assumes that in the particular sample being analyzed that
in fact the covariances of the error, e, with each of the k predictors equals zero; that
is, X'e = 0, giving:

bors = (X'X)"'X'y (4)
= Vixvxy
where Vxx is the sample covariance matrix for X and vy is a vector of the sample
covariances between X and y.

We obtain the OLS solution for b by assuming that E[X'e] = 0. To see the
importance of this assumption, replace y in Equation (4) with the right hand side of
Equation (1). Taking the expectation of both sides, one gets:

Elbors] = E[(X'X)"'X'(Xb +e)]
= b+E[(XX)Xe] (5)

This analysis is traditional and can be found in many textbooks. It shows that OLS is
unbiased when the correlations between X and e in the population is zero, resulting
in E[(X’X)~!X’e] = 0. If this is not the case, then bp; s will be a biased estimate of
b.
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X and e may be correlated in a specific sample for two reasons. First, X and
e may be uncorrelated in the population, but the sample correlation between X
and e might differ, perhaps substantially, from zero. This source of error would be
reflected in the sampling errors of the parameter estimates. A second possibility is
that X and e are correlated in the population. In this case, if the correlation is large
or, as we will see below, if there is multicollinearity, bo; s can be highly biased.

A Generalized OLS Estimator

The traditional OLS estimator can be generalized to situations in which the popula-
tion correlation or covariance between X and e is some other fixed vector of values
besides zero. Let ¢y be a possibly nonzero vector representing our assumption
based on prior information (or guess) about what the covariance between X and
e—that is, X'e/n—equals in the population. Then substituting for X’e in Equation
(3), the analogue to Equation (4) would be:

(X'X)~1(X'y — ncp)
= Vyx(vxy — )

bcors

(6)

We refer to this as the generalized OLS estimator. Note that it is equivalent to the
standard OLS estimator, except that we adjust Xy by subtracting out the “correction”
factor ncp, n times our assumed covariance between X with e. Equation (6) reduces
to Equation (4) if ¢cp = 0.

To understand the properties of Equation (6), substitute for y in Equation (6)
using the right-hand side Equation (1), giving;:

boors = b+ (X'X)"'(X'e —ne) (7)
Taking expectations of both sides gives one:
Elbcors] = b+I[(X'X)"(X'e —nco)] (8)

Equation (8) shows that by s will be an unbiased estimate of b if E[(X'X) ! (X'e —
nep)] = 0. A sufficient condition for this to be true is that E(X'e — n¢g)] = 0.

Why might (X'e — n¢g) # 0 in a particular sample (that is, X'e and n¢g not be
equal)? To answer this question, let ¢ equal the true covariance between X and e
in the population as opposed to ¢y, which is our assumed value of the covariance
between X and e. Rewrite Equation (7) as follows:

bgors = b—l—n(X’X)’l(s—i-m) (9)

where the sampling error
s=Xe/n—c

and the specification error
m=2c¢—(

There are two reasons why s + m might not approximate zero in the sample. First, s
may not be approximately zero—or equivalently, X'e/n % c¢—because of sampling

sociological science | www.sociologicalscience.com 631 July 2016 | Volume 3



Winship and Western

Multicollinearity and Model Misspecification

error. Under suitable regularity conditions, the law of large numbers guarantees
that the error will be small in the sense of consistency. This means that as our
sample grows, the probability that the sample value of X'e will differ from its true
value by an arbitrarily small amount goes to zero.” In finite samples, X'e/n may
differ significantly from c. This difference induces sampling variance in bgors.

Second, m may not be approximately zero; that is, ¢ % ¢y. A large difference
between ¢ and ¢ indicates we have incorrectly specified the limiting behavior
of the covariance between X and e. For instance, our regression model will be
misspecified if we assume that X'e/n is zero when in fact it is not. It is critical to
note that the difference ¢ — ¢ is not a function n. Model misspecification error (M)
is not affected by the sample size. This is in sharp contrast to the sample error (S),
which will by the law of large numbers go to zero in probability as the sample size
goes to infinity.

Traditional OLS assumes a model in which the independent variables and error
term are uncorrelated, X'e/n = ¢y = 0. This is the key assumption in OLS and
its potential Achilles heel. There are a variety of reasons why it may be violated:
there are Xs that have been omitted that affect y and are correlated with the Xs in
the model, some or all of the Xs contain measurement error, y and some of the Xs
simultaneously determine each other, or there is selection on the dependent variable.
Indeed, simultaneity and selection bias can be thought of as inducing special kinds
of omitted variable bias. All these specification errors produce correlations between
X and e. In these cases, OLS is inconsistent. Consistent estimates can be obtained
by correctly assuming the covariance between X and e. If we know, approximately
at least, the covariance between X and e, we can correct misspecification from a
variety of sources with the generalized OLS estimator. Thus, a potential strength of
the generalized ordinary least squares estimator is its ability to deal with a wide set
of specification problems in the standard linear regression model.

The validity of any set of OLS estimates rests with the plausibility of our as-
sumptions that X'e/n = ¢g = 0. The researcher’s job is to argue that any deviations
are likely to be small, and it is the critic’s responsibility to demonstrate why they are
likely to be large. In almost all cases, it is implausible to assume that X'e /# is exactly
zero. There are always some omitted independent variables that may have some,
hopefully small, effect on y and are correlated with the included predictors. In
social science data, most variables are measured with error. Sometimes simultaneity
or selection bias is an issue. All of these problems lead to situations in which X and
e are likely to be at least weakly correlated. The hope (and prayer) in using OLS
is that these problems are sufficiently minimal so that X’e/n will be close enough
to zero that bpy s will estimate the true regression parameter, b, reasonably well to
within sampling error.

If ¢ was known or accurately approximated, then we could use the generalized
OLS estimator in Equation (6) and perform OLS on the adjusted covariance of X
and y, (X'y/n — c). Unfortunately, we almost never have precise knowledge about
the adjustment factor. Below, we show how Bayesian methods can be used to deal
with uncertainty about the true value of c.
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The Consequences of Multicollinearity

Multicollinearity occurs when predictors in a linear regression are nearly linearly
dependent. This may occur because two variables are highly correlated or because
one variable is well approximated by a linear function of other independent vari-
ables. Multicollinearity is a property of the X’X matrix. With centered data, X'X
equals 7 times the covariance matrix of the independent variables, X. A variety of
multicollinearity diagnostics have been proposed. These will not concern us here
(Belsley 1991 provides a comprehensive review).
Consider Equation (9) again:

bgors = b—l—n(X’X)’l(s—i-m) (9)

In this equation, (X’X) ! multiplies the vector (s + m) = [(X'e/n — ¢) + (¢ — ¢p)].
When multicollinearity is a problem, it is analogous to a column of X’X matrix being
nearly equal to zero. Matrix inversion is similar to the division by a scalar. Like
division when we divide by a number close to zero, when there is multicollinearity
and we multiply by (X'X) !, we may tremendously increase the size of the quantity
being multiplied.®

So, although the difference between X’e/n and ¢ due to sampling error may be
quite small, (X’X)~1(X’e/n — ¢) may be large because of the effect of multicollinear-
ity in X'X.

Note that (X'X) ! multiplies two terms: (X'e/n — c), the sampling error, and
(¢ — ¢p), the specification error. Expanding Equation (9),

bcors =b +s* +m* (10)

where
s* =n(X'X)"}(X'e/n — cp)

and
m* = n(X'X) (co — ¢)

Although nonstandard, this decomposition is key to understanding the poten-
tial effects of collinearity. The vector s* represents the error in bgos because of
sampling—the traditional concern about multicollinearity. The vector m* repre-
sents error because of model misspecification. If there is multicollinearity, small
departures from zero in either (X'e/n — ¢g) or (co — ¢) can lead to large departures
in bgors from b because of multiplication by (X'X)~1.”7

As noted above, the traditional statistics and econometrics literature focuses on
the effects of multicollinearity on sampling error. Why hasn'’t this literature been
concerned with misspecification error? The traditional literature assumes that in the
population X'e/n = ¢y = 0 exactly, thus making the problem of misspecification
disappear. Of course, it is never the case that social scientists have perfectly specified
models, making this strict assumption implausible.
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Hypothetical Examples

The following example helps sharpen intuitions about the problem of multicollinear-
ity and model misspecification. Table 1 shows the covariance/correlation matrix
for two predictors, x1 and x,, and a dependent variable y. Because all the variables
except the error term have variance one, the covariances are equivalent to correla-
tions. Two columns have been used for the error term, ¢, to indicate its correlation
and covariance with each of the other variables. Because the R? in this model is
relatively small (0.1825), the covariance between each variable and the error term
and their correlation are approximately equal. As described in our discussion of
Equation (6), adjusting X'y by subtraction of n times the covariance of X and e
yields consistent estimates of the coefficients. Applying Equation (4), the OLS
estimates are: b; = 0.25 and b, = 0. These estimates are independent of sample size.
The standard errors for these regression estimates can be made arbitrarily small
by choosing n to be sufficiently large. In the extreme, we could assume that # is
infinity, making the standard errors of the estimates zero. What is astounding in
this example is that the OLS estimates suggest that x; has no effect on y, whereas
the partial effect of x1 is equal to its bivariate correlation. This is remarkable given
that the correlations of the two predictors with y only differ by 0.05.

Now, consider the problem of model misspecification. In this example, our two
predictors, x1 and x,, covary at 0.025 and —0.025 with the error term. Covariances
of this size might be created by omission of a third predictor, x3. For example,
these correlations would occur if the effect of x3 on y was 0.125 and if x3 correlated
with x1 and x; at 0.20 and -0.20. The omitted predictor might also be a composite
variable consisting of all omitted variables. The effect of this omitted variable might
be quite large in standardized units—say, 0.70—accounting for approximately half
of the variance in y. In this case, the respective correlations would only need to
be 0.036 and —0.036 to induce covariances of the above size between the included
predictors and e.

We now use the generalized OLS estimator to correct for the correlation between
the predictors and e. Applying Equation (6), this is equivalent to adjusting the
correlation of x; and x, with y (0.25 and 0.20) by subtracting out their covariances
with e (0.025 and —0.025) and then carrying OLS. Our new estimates are then
by = by = 0.125. Notably, a modest degree of model misspecification induces a
large difference between the OLS estimates and the true coefficients. The predictors
x1 and xp have small correlations with the error of £0.028. In practice, it would
often seem untenable to claim that the correlations of independent variables with
the error are smaller than this.

In this example, the covariances between the predictors and the error term are
equal in magnitude but opposite in sign. If we write this covariance as ¢ and the
covariance between the two predictors as 7, then the bias in the OLS estimates
for the two coefficients is ¢/ (1 — r) and —c/(1 — r). Figure 1 plots the bias in the
OLS estimate of the slope for x; as a function collinearity between the predictors,
r, given a fixed level of model misspecification, ¢ = 0.025. Bias is expressed as a
percentage of the true coefficient value, 0.125. Bias in OLS increases nonlinearly
with increasing collinearity. Very high levels of collinearity can produce extremely
large biases even when the model misspecification is very modest as in this example.
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Table 1: Covariance/Correlation Matrix for Example 1.

Correlation Covariance

y X1 X e e
y 1.00 0.25 0.20 0.900 0.818

X1 1.00 0.80 0.028 0.0250
X 1.00 —0.028 —0.0250

If the predictors are uncorrelated, however, the bias simply equals the covariance
between the predictor and the error. While bias because of model misspecification
in OLS increases nonlinearly with collinearity, for a fixed level of collinearity, bias
only increases linearly with misspecification. In this sense, OLS estimates are more
sensitive to collinearity than model misspecification.

In sum, multicollinearity can substantially affect the robustness of OLS estimates
to model misspecification. Small errors in model misspecification can lead to
large biases in parameter estimates. Note that this has nothing to do with sample
size or classically calculated standard errors, as in the traditional discussion of
multicollinearity. Increasing the sample size has no effect on the biases observed in
this example. We can have a sample of infinite size, sampling standard errors of
zero, and we would have the same problem. This suggests that multicollinearity
may actually be most dangerous with large data sets. In this case, because our
sampling standard errors are small, we may well believe that multicollinearity is
not a problem when in fact small changes in our model specification might have a
large effect on our estimates.

Modeling Specification Uncertainty

Sensitivity Analysis

Collinearity increases the sensitivity of estimates to the model misspecification.
What can be done? Sensitivity analysis provides the simplest solution. In this
approach, the researcher studies how estimates change with the model specification.
Although sensitivity analysis is often valuable, it does not provide a way of calculat-
ing standard errors that incorporates model uncertainty or a method for hypothesis
testing that allows for the uncertainty (although cf. Leamer 1983). We now discuss
a Bayesian approach that allows for the incorporation of model uncertainty into
estimates of standard errors.

Bayesian Approach

Bayesian regression is rarely used because typical applications make stronger as-
sumptions than OLS.® Our approach, however, uses Bayesian methods to relax
the OLS assumptions. We use a Bayesian prior distribution to allow for uncer-
tainty about the model specification. This approach is similar in spirit to Raftery’s
(1995) work on model uncertainty, though the technical specifics are different. Like
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Figure 1: Bias in OLS coefficient estimates as a function of collinearity for a misspecified model. Collinearity
() is measured by the covariance between the two predictors in the regression. Misspecification is indexed
by the covariance between the predictors and the errors (c = 0.025).

Raftery’s work, our method relaxes the assumption that the true model is known
with certainty. This causes standard errors to increase. With these weaker assump-
tions, our method may well uncover situations where multicollinearity is a problem,
but appears not to be—where classical standard errors are small, but estimates are
not robust to different model specifications. This is particularly likely to be the case
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when the data matrix appears to be highly informative—for example, when sample
size is large.

The problem with OLS is that the standard errors of the coefficients only reflect
sampling error. There is no way to incorporate uncertainty associated with the
model specification. In this section, we utilize Bayesian methods to provide for the
possibility of uncertainty in the model specification. In doing so, we are able to
produce confidence intervals for parameters that reflect both sampling error and
potential misspecification error.’

Again, consider Equation (6), the generalized ordinary least squares estimator:

bcors = (X'X)7}(X'y —nc)
= Vyx(vxy —c)

(6)

This model can be thought of as having two sets of parameters: b, the regression
coefficients, and ¢, the correction factor for X'y /n—equal to the covariance between
X and e—that is used to account for the fact that the predictors and the errors may
be correlated. As specified, this model is unidentified without further assumptions
about either b or c. The traditional frequentist approach assumes a particular set
of values for ¢ to solve for b. This is a very strong assumption. From a Bayesian
perspective, the frequentist approach is peculiar: it amounts to assuming that
we have no prior information at all about the true value of b, but that we have
absolutely perfect information about ¢, typically that ¢ = 0.

In the Bayesian approach, we assume that the values of b and ¢ are unknown,
but that our beliefs about their values can be described by a prior distribution. If at
least some of our beliefs are represented by a proper probability distribution, then
the posterior distribution of our parameters, b, will also be proper.' This means
that unidentified models can be analyzed by Bayesian methods by imposing distri-
butional assumptions on parameters, whereas in a classical frequentist approach,
strict constraints would have to be imposed on these parameters in order to identify
the model. This fact is well known but has seen only limited application (Neath
and Samaniego 1996; Kadane 1975; Dreze 1975; Lindley and El-Sayyad 1968).

Why do proper priors yield proper posteriors? Assume that we have no prior
information regarding b. Using the generalized OLS estimator (Equation [5]), we
can calculate the generalized OLS estimate of b for any value of c¢. Now if we
think of ¢ not as a specific value but instead as a distribution of values, then for
any particular value of ¢ in the distribution we can estimate b. The distribution
of ¢ describes our degree of belief in different values of c. With this probability
distribution, we can derive the probability of different values of b. The probability
of different values of b will be a function of potential sampling error and the
probability of different values of c.!!

Posterior Mean and Covariances

For the purposes of this article, we assume that we have no prior information about
b. Equivalently, b is given an improper diffuse prior. A standard result shows that
with this prior, assuming ¢ = 0 and normal errors, the Bayesian posterior means for
b equal the OLS estimates (Gelman et al. 1995). To incorporate model uncertainty,
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we place a proper informative prior on c. We specify this prior distribution to be
normal and centered at ¢y, with prior covariance matrix Uy. Generalization to the
case where b has a proper prior is straightforward.

In Appendix A of the online supplement, we derive the posterior means and
covariance matrix for b under the above assumptions. The posterior mean of the
regression coefficients is given by:

bBayes =Dbors — n(X/X)_lco (11)
and the posterior covariance matrix is
V(bBayes) =R+ nz(xlx)_lUO(X/X)_l (12)

where R is the OLS estimate of covariance matrix for b. The posterior mean is
simply the OLS estimate of b adjusted by the prior specification of the bias. The
posterior covariance is simply the OLS covariance plus a function of the prior
covariance matrix for c.

Note that the second term in Equation (12), n?(X'X) "'Uy(X'X) "1, is equal to
V;&UOVXX, where Vxx is the covariance matrix of X. Because the covariance
matrix for X does not depend on 1, the Bayesian adjustment to the OLS standard
errors is independent of sample size. The adjustment expresses uncertainty in our
estimates because of model uncertainty. Thus, as sample size goes to infinity, the
Bayesian standard errors will not go to zero.

Specifying a Prior

Choice of a prior is key to dealing with model misspecification of various types.
A model could be misspecified for a variety of reasons: an omitted variable or
variables, measurement error, selection, or simultaneity. Each of these problems
implies a different type of prior. A full discussion of prior specification, however, is
an article itself. This is a topic for future research. Here, we provide only a basic
discussion.

In terms of our analysis of multicollinearity, our goal is to provide a way of
measuring the sensitivity of estimates to modest changes in the model specification.
For now, we are only interested in using a prior that allows us to move to moderately
weaker assumptions than the extraordinarily stringent assumption made in the
classical regression model, that E[X"e] = 0 exactly. Specifically, we want to examine
situations in which we suspect that X and e are nearly uncorrelated, but we are not
fully confident that this is exactly true.

The purpose in using the Bayesian methods is not to get precise results, but
rather to get a rough sense of how much larger standard errors should be in order
to reflect uncertainty about the model specification as well as sampling error. We
begin by assuming that the prior mean ¢y = 0 and that the covariance matrix, Uy, is
diagonal. This simplifies the choice of prior, restricting attention to the variances
in Uy. We further simplify the prior covariance matrix by specifying Uy = 1], in
which I is the identity matrix. Choice of the prior covariance matrix thus reduces to
choosing a single prior parameter, 1. We can elicit u( by specifying an interval that
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represents the likely range of the covariances between X and the error term. With
¢o = 0, this interval will be centered at zero. The plausible interval for ¢ will cover
four standard deviations of the normally distributed prior. Dividing the length of
the interval by four yields the prior standard deviation of ¢g. Squaring the prior
standard deviation yields the prior variance, 1, that fills the diagonal elements of
the prior covariance matrix, Up.

How large is the covariance between a predictor and the error term? We limit our
discussion here to the problem of omitted variables. It is easiest to think about the
effects of omitted variables if our predictors and the errors have standard deviations
of one. To work in this metric, each predictor, x;, is scaled by its standard deviation,
s(x;). To ensure the standard deviation of the errors is approximately one, first
regress y on the scaled X and calculate the standard deviation of the residuals,
s(é). Scaling y by s(é) ensures that a regression fit to the scaled data will have OLS
residuals with a standard deviation of one. After the Bayesian regression is fit,
the coefficient standard errors can be transformed back to their original scales by
multiplying by s(&) /s(x;).

Once the independent and dependent variables are suitably scaled, the covari-
ance and correlation between X and e will be equal. In general, the range of possible
correlations between the independent variables and the error should be small; we
would suggest less than 0.10 in absolute value. If this is not the case, then one’s
model is so misspecified that further analysis of it is unlikely to be worthwhile.

Consider the case in which there is only minimal knowledge about the correla-
tions between X and e. We suggest that correlations between X and e in the interval
[— — 0.10,0.10] represent a high degree of model specification uncertainty, the inter-
val [— — 0.05,0.05] expresses a moderate degree of uncertainty, and [— — 0.02,0.02]
describes strong confidence in one’s specification. Dividing these intervals by four
and squaring them yields the prior standard variances, 0.0001, 0.000625, and 0.0025
that represent a reasonable range of values in Uy.

The prior specification for Ug implies that: (1) each predictor is equally affected
by a model misspecification that is summarized by one parameter, 1y, and (2)
because Uy is diagonal, our uncertainty about the components of ¢ are uncorrelated.
The prior could be elaborated by relaxing the restriction that the prior variances
be equal. Of course, if one has strong intuitions about the nature of the model
misspecification, then this should be incorporated into one’s choice of both the prior
mean, ¢p, and the prior covariance matrix, Up.

Choosing Uy to be diagonal represents a middle position between two extremes.
Consider a regression with two predictors. Without loss of generality, assume that
both have a positive effect on y. One possibility is that the covariances of these two
Xs with the error term have the same sign: either both positive or both negative.
Correcting for misspecification of this type principally leads to the absolute size
of the variables’ two regression slopes changing in the same direction, not their
relative sizes. Formally, if aX'y = X'e = ncy for a positive scalar a so the covariances
between each X and e is positively proportional to the covariance between that X
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and y, then:
bcors (XX) "' (Xy - nco)
= (X'X)7'(X'y —X'e)
(XX)"'(X'y — aX'y)
= (1-a)(XX)"(Xy)
= (L—a)bors

Here, correcting for misspecification reduces the absolute size of the OLS estimates.
Their size relative to each other remains constant. As before, multicollinearity
magnifies the effects of model misspecification, but the size of coefficients is only
changed absolutely. This situation would occur if, for example, the degree of
measurement error in the Xs as measured by their reliabilities is similar. To the
extent that the covariances between the Xs and the error term fail to meet the
above proportionality condition, misspecification will change the relative size of
coefficients.

The other possible pattern of misspecification is that the covariances of the two
Xs with the error term are likely to be of the opposite sign. This was illustrated in
the three hypothetical examples described above. In this case, both the absolute and
relative size of the two coefficients will change. The particular pattern of variation
in the covariances will differ across situations. If an error term consists of random
measurement error associated with a particular X, then that variable will have a
negative covariance with the error, but the other Xs will be uncorrelated with the
error term. If the nonrandom component of the error term consists of omitted Xs,
the covariance of each observed X with the error term will depend on its covariance
with these omitted variables. In this case, as the hypothetical examples above
demonstrated, multicollinearity is likely to severely exacerbate the effects of model
misspecification.

Specifying Uy to be diagonal represents a compromise between the two cases just
described: in one model, uncertainty is likely to change the relative size of effects
only modestly, and in the other model, uncertainty is likely to dramatically change
the size of relative effects. Substantively, this prior implies that our uncertainty
about the components of ¢y are uncorrelated. In this case, our beliefs about a
specification error that would bias one coefficient are unrelated to beliefs about
specification errors affecting other coefficients.

A Monte Carlo Experiment

We can compare the frequentist properties of our Bayesian method to OLS with a
Monte Carlo experiment. To perform the experiment, we generate the predictors
and the dependent variable from a known distribution. We then fit models using
OLS and Bayesian regression, varying four experimental conditions: (1) sample
size n, (2) collinearity 7, (3) the model misspecification C, and (4) the prior variance
for the specification error #y. Our interest centers on the rate at which nominal
confidence intervals cover the true regression coefficients. Ideally, a 90 percent
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confidence interval for a coefficient should cover the true regression coefficient
90 percent of the time in repeated sampling. Of course, OLS confidence intervals
have this property for correctly specified models. If the true coverage rate of a
confidence interval is lower than its nominal level, the interval provides a falsely
precise inference. How does OLS perform relative to the Bayesian regression for
misspecified models?

This question is studied with the following experimental design. A sample of
size n (n = 100,1,000) for each of three variables—x1, x», and x3—is generated
from a trivariate normal distribution with mean 0 and covariance matrix

1 r ¢
X = 1 0|, r=0060, and c¢=0,0.15,0.30
10

We then formed a dependent variable, y = x1 + x2 + x3, and fit a misspecified
model including only the predictors x; and x,. The true regression coefficients for
x1 and x, are thus known to equal one. The model is misspecified in the sense
that there is an omitted variable, x3, that is correlated with one of the included
predictors. In fitting the misspecified model, r controlled the collinearity among
the included predictors, and c controlled the degree of model misspecification.
We can express the misspecification as a correlation, rather than a covariance, by
dividing by the variance of the omitted variable. The correlation between the
omitted variable and x; is C = ¢/10. The Bayesian regression uses a prior that
assumes that the correlations, C, between predictors and the error is in the interval
[—0.05,0.05] (19 = 0.000625) or in the interval [—0.10,0.10] (u9 = 0.0025). When
the misspecification correlation C = 0.03 and the prior ug = 0.000625, model
misspecification is towards the edge of prior distribution. For 119 = 0.0025, however,
the largest specification errors are well within the range entertained by the prior. For
each simulation, OLS and Bayesian 90 percent confidence intervals were calculated.
For each design point (r, ¢, 1, up) in the experiment, we performed 500 simulations.
The coverage rate for a coefficient equals the percentage of confidence intervals out
of 500 simulations that cover the true coefficient value of one. (Computer code used
to perform these and other Bayesian calculations is reported in Appendix B of the
online supplement.)

Table 2 compares the OLS and Bayesian estimators for the coefficient of x; when
the prior, up = 0.00625. As we would hope, an OLS 90 percent interval yields the
correct coverage rate when the model is correctly specified; that is, when C = 0.
As the specification error increases from C = 0 to C = 0.03, the performance of
OLS deteriorates substantially. The final column of Table 2 shows that bias in OLS
ranges from 15 percent to 50 percent of the true coefficient even with relatively little
specification error. Bias also impairs the performance of inference with OLS. In
small samples, when omitted variables correlate with observed predictors at 0.03,
a nominally significant interval of 90 percent covers the true parameter between
56 percent and 78 percent of the time. With small samples and assuming only
moderate model misspecification, the Bayesian regression offers little protection
from specification errors. With n = 100, a prior of 1y = 0.000625 increases the OLS
standard errors by less than 10 percent. Because the Bayesian adjustment for model
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Table 2: Monte Carlo Results Comparing Coverage Rates of 90% Intervals and Standard Errors (S.E.) for OLS
and Bayes Estimators, with Prior 1y = 0.000625.

Specification OLS Bayes OLS Bayes
Error Collinearity Coverage Coverage Average Average Average
© (r) (%) (%) S.E. S.E. Coefficient
Sample size, n = 100
0.000 0.0 92 92 0.32 0.33 1.00
0.000 0.6 91 92 0.40 0.43 1.02
0.015 0.0 88 89 0.32 0.33 1.15
0.015 0.6 83 86 0.40 0.43 1.26
0.030 0.0 75 77 0.32 0.33 1.29
0.030 0.6 66 70 0.40 0.42 1.49
Sample size, n = 1,000
0.000 0.0 91 97 0.10 0.13 1.00
0.000 0.6 89 99 0.13 0.19 1.00
0.015 0.0 57 74 0.10 0.13 1.15
0.015 0.6 43 76 0.13 0.19 1.23
0.030 0.0 08 17 0.10 0.13 1.30
0.030 0.6 02 10 0.12 0.19 1.46

Note: A prior of 1y = 0.000625 assumes that correlations between predictors and the error fall in the interval

[—0.05,0.05].

misspecification is independent of sample size and coefficient standard errors tend
to be large in small samples, the adjustment contributes only a small fraction to the
Bayesian standard error. Consequently, there is no significant efficiency loss with
the Bayes estimator but little gain in inferential accuracy for misspecified models.
The advantage of Bayesian inference is clearer in large samples. With a sample
size of 1,000 and a correctly specified model, the Bayesian interval is substantially
too conservative (too wide) only at a high level of collinearity. With moderate
misspecification (C = 0.015), the prior of 1y = 0.000625 increases the OLS standard
errors between 30 percent and 50 percent, depending on the level of collinearity.
With this model misspecification, OLS performs poorly. With uncorrelated predic-
tors, the OLS confidence interval covers the true parameter just over half the time.
When the predictors are moderately collinear (r = 0.60), the nominal OLS 90 percent
interval includes the true coefficient less than half the time. The Bayes estimator
offers a large gain in inferential accuracy in this case, with coverage rates over 70
percent. When the model misspecification is severe, C = 0.03, the OLS interval
rarely covers the true interval, even with uncorrelated predictors. Although prior
information about specification errors inflates the OLS standard errors substantially,
confidence intervals with a prior of ug = 0.000625 are also extremely optimistic.
Table 3 reports results for the prior 1y = 0.0025, which assumes that correlations
between observed predictors and the errors are between —0.10 and 0.10. This prior
produces similar results to those obtained with the more modest assumption that
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Table 3: Monte Carlo Results Comparing Coverage Rates of 90% Intervals and Standard Errors (S.E.) for OLS
and Bayes Estimators, with Prior ug = 0.0025.

Specification OLS Bayes OLS Bayes
Error Collinearity Coverage Coverage Average Average Average
© (r) (%) (%) S.E. S.E. Coefficient
Sample size, n = 100
0.00 0.0 89 92 0.32 0.36 0.99
0.00 0.6 91 96 0.40 0.50 1.00
0.15 0.0 87 93 0.32 0.36 1.14
0.15 0.6 81 89 0.40 0.50 1.26
0.30 0.0 75 81 0.32 0.36 1.29
0.30 0.6 70 80 0.40 0.49 1.47
Sample size n = 1,000
0.00 0.0 90 100 0.10 0.19 1.00
0.00 0.6 91 100 0.13 0.31 1.00
0.15 0.0 53 94 0.10 0.19 1.16
0.15 0.6 41 98 0.13 0.31 1.23
0.30 0.0 09 54 0.10 0.19 1.30
0.30 0.6 02 66 0.12 0.31 1.46

Note: A prior of up = 0.0025 assumes that correlations between predictors and the error fall in the interval

[~0.10,0.10].

u = 0.000625. In the analysis of small samples, the Bayesian adjustment is slightly
larger than under the more conservative prior. Good results are obtained for modest
specification error (C = 0.015), with Bayesian coverage rates in the vicinity of their
nominal level of 90 percent. In large samples, the Bayesian regression performs
very well at this level of specification error. With C = 0.015 in large samples, OLS
intervals are overly optimistic (too narrow) by a very large margin. The Bayesian
interval, on the other hand, provides coverage rates close to their nominal levels.
In highly misspecified models, C = 0.03, the Bayesian intervals yield a significant
improvement over OLS, although the intervals are still very optimistic.

The Monte Carlo experiment suggests that regression analysis with a prior
allowing for specification error is a useful diagnostic tool in nearly all circumstances.
In small samples, the Bayesian analysis does not perform substantially worse than
OLS and can provide small improvements in the presence of specification errors.
In large samples, the Bayesian analysis can perform significantly better, especially
with moderate levels of specification error and highly collinear predictors.

An Empirical Example

To illustrate the Bayesian regression in a more realistic example, we consider the
race gap in male earnings controlling for measures of skill and schooling. This
analysis arises in the context of the exchange between Cancio, Evans, and Maume
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Table 4: Correlations among Variables for Regression Analysis of Log Hourly Earnings, NLSY Men, 1998

(N = 3,526).
Log
Wages Schooling AFQT Married  Age Black  Hispanic

Log Wages 1.00 0.40 0.44 0.24 0.06 -0.21 —0.05
Schooling 1.00 0.63 0.15 0.01 —0.09 —0.12
AFQT 1.00 0.20 0.14 —0.38 —0.14
Married 1.00 0.06 —0.22 0.01
Age 1.00 0.00 0.00
Black 1.00 —0.31
Hispanic 1.00

(1996) and Farkas and Vicknair (1996). Briefly, Cancio et al. (1996) argue that a large
racial gap in wages remains even after controlling for social background and market
characteristics of workers, and indeed, the wage gap has grown since 1976. Farkas
and Vicknair (1996) reply that skill differences can account for the black-white wage
gap among men. We take no particular position on the substantive issues, but the
debate does usefully illustrate reliance on statistical inference about coefficients
in the presence of collinearity. Like Farkas and Vicknair (1996), we analyze data
from the National Longitudinal Survey of Youth (NLSY). Our sample is restricted to
males with positive hourly earnings in 1998. The dependent variable is log hourly
earnings, and predictors include measures of skill, years of schooling, a dummy
variable for married respondents, age, and dummy variables for black and Hispanic
respondents. Skill is measured by the respondent’s percentile score for the Armed
Forces Qualification Test (AFQT).

Table 4 reports correlations among the the dependent and independent variables.
Schooling and AFQT are highly correlated, and black is moderately correlated with
AFQT and married. Regressing AFQT on all the other independent variables yields
an R? of 0.56, indicating moderate collinearity among the predictors.

Interest centers on the residual black-white gap in wages expressed by the
coefficient for black. The OLS results indicate that black men in the NLSY earned
10 percent less than white men after controlling for schooling, AFQT, marital status,
and age (Table 5). The black coefficient is statistically significant. If the model
is only only slightly misspecified so that correlations of omitted variables with
the predictors are of the order +0.01, our uncertainty about the black-white wage
gap increases, but we can remain quite confident about the earnings difference.
If specification errors are larger than this, the Bayesian analysis indicates that we
cannot draw a confident conclusion about the earnings gap. Indeed, this result
usefully quantifies the state of the debate—inference about the black-white wage
gap is sensitive to the choice of model specification.
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Table 5: Bayesian and OLS Regression Results from Analysis of Log Hourly Eearnings, NLSY Men, 1998.

Absolute t statistics

up = up = up =

Coefficient =~ OLS 0.0001  0.000625 0.0025
@) () ©) 4) ()
Schooling 0.06 10.60 7.54 3.98 2.10
AFQT 0.58 11.68 7.89 4.02 2.10
Married 0.20 9.71 8.21 519 2.93
Age/10 0.03 0.76 0.64 0.40 0.23
Black —0.10 3.62 2.70 1.48 0.79
Hispanic —0.02 0.86 0.69 0.40 0.22

Note: Results for columns 3 to 5 are from the Bayesian regression analysis. R?> = 0.25, N = 3, 526.
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Conclusion

Often when empirical researchers carry out a regression analysis, they focus on the
point estimates they obtain. This gives the impression that the data provides one
answer about the magnitude of an effect. Of course, data are typically consistent
with a range of effects, and the point estimate is only the most likely estimate for a
given model. We are much better off to think of the confidence interval around an
estimate as representing the values of the effect that are consistent with the data.

A confidence interval, however, is only useful if it accurately reflects the uncer-
tainty about an estimate after the analysis has been carried out. In the first part of
this article, we showed that parameter estimates are likely to be highly sensitive to
model specification when multicollinearity is present. The following section of the
article presented a Bayesian approach to incorporating uncertainty about the model
specification into one’s standard errors and thus into one’s confidence intervals.
Monte Carlo results indicated there are few disadvantages and often significant
improvements in inference with Bayesian methods. We then demonstrated how this
methodology could be used in two empirical situations in which multicollinearity
is a potential problem.

The approach here could be applied in other situations. An obvious applica-
tion is to the problem of “weak” instruments. The weak instruments literature
uses instrumental variables that are weakly correlated with the dependent and
independent variable of concern, but obtain precise estimates by using extremely
large samples. The most discussed example is the use of quarter of birth as an
instrument for education in estimating the effect of education on earnings (Angrist
and Krueger 1991, 1992). As John Bound and his coauthors (Bound et al 1995;
Bound 1996) have argued, these analyses are quite sensitive to model specification
error. More generally, the approach developed here could be used to analyze the
sensitivity of identification restrictions in simultaneous equation models or in latent
class analysis.

Our hope is that this article will encourage others to think more generally
about how to incorporate model specification uncertainty into one’s analysis. If
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anything is true of social science analyses, it is that we typically are uncertain
about what the "right" model is. Even if we are individually confident about a
particular specification, there are almost certainly others who will argue that we
have gotten it wrong. Paradoxically, the frequentist methods that we all commonly
use assume that we know the correct model. A Bayesian approach potentially
offers a constructive alternative. This article is a first attempt to provide what will
hopefully be a useful approach to incorporating uncertainty and disagreement
about model specification into one’s analysis.

Notes

1 We have examined numerous statistics and ecometric textbooks as well as class notes
posted on the web. In almost all cases, the discussion of multicollinearity has focused
solely on its consequence for standard errors, as opposed to the additional problem
of bias considered here. Farrar and Glauber (1967) and Mela and Kopalle (2002) are
exceptions. We thank the editor for pointing out these two citations.

2 A closely related issue that has received considerable attention in the econometric

literature is that of weak instruments. The problem with weak instruments is that the
Z'X matrix in the IV formula byy = (Z'X)~1Z'Y may be close to singular, possibly
resulting in substantial bias if the exclusion restriction does not hold exactly (Bound et al.
1996). This is directly analogous to the problem we discuss at length in this article, in
which multicollinearity results in the X'X being nearly singular, with the consequence
that OLS estimates can be severely biased if the assumption that the X’s and error are
uncorrelated is not met exactly.

3 For an recent overview of that literature, see Neelman 2012. Much of the literature on

multicollinearity has been published prior to 2000. Important exceptions are several
articles that have analyzed the consequences of multicollinearity in multilevel models
(Yu 2015; Shieh and Foulai 2003; Graham 2003).

4 The astute reader will wonder why the problem of model misspecification in the presence

of multicollinearity cannot simply be solved in the case where one has a very large
sample by choosing a subsample in which the Xs were uncorrelated. Unfortunately, this
increases the absolute size of the covariance between the Xs and the error, exacerbating
the misspecification problem. This is most easily seen in the case of measurement error.
Consider the case of two Xs that are positively correlated. We would want to choose
cases where individuals were high on one value of X, but low on the other. But these are
precisely cases that are likely to have considerable measurement error associated with
them.

5 One could also worry about whether the value of X’e in the sample is an unbiased

estimate of the population value of X'e. If X is assumed fixed, then the linearity of this
expression guarantees unbiasedness.

6 More formally, the effect of multicollinearity can be understood using the adjoint matrix

method for calculating a matrix’s inverse. The key observation is that the elements of a
matrix’s inverse are equal to the corresponding element in the matrix’s adjoint matrix
divided by its determinant. A matrix’s determinant will be zero when there is strict
linear dependence and near zero when there is strong multicollinearity.

The determinant for a k by k matrix is its volume in k dimensional space. The adjoint of a
matrix is simply calculated as the transpose of a matrix, replacing each element by its
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cofactor. The element Mij’s cofactor is the determinant of the submatrix of M defined by
deleting the ith row and jth column (Cullen, 1972, section 3.3.)

7 As discussed in Mela and Kopalle (2002), it is possible in some cases, depending on the
exact pattern of correlation, for multicollinearity to lead to more and not less precise
estimates.

8 A Bayesian approach is commonly recommended as a means of dealing with multi-
collinearity. The thinking is analogous to the recommendation for dealing with multi-
collinearity by increasing the sample size. If the analysis is based on more information,
then we should be able to estimate the parameters more precisely (Leamer 1994; Birkes
and Dodge 1993; Judge et al. 1985). The ridge estimator, another way of dealing with
multicollinearity, can be justified in part as a special example of a Bayesian estimator
(Birkes and Dodge 1993; Judge et al. 1985) in which the regression coefficients are being
shrunk to a prior with zero mean and a diagonal covariance matrix.

9 In spirit, the approach here is similar to that of Manski’s (1995) work on bounds.
Manski’s work involves determining the bounded set of estimates that are consistent
with a minimal set of assumptions or restrictions. These restrictions are deterministic. In
essence, the approach here involves examining the implications of assumptions that are
probabilistic.

10 A probability distribution (or density) is “proper” if it integrates to one.

11 The thinking here is similar to Raftery’s (1995) for pooling across models. In Raftery’s
approach, a pooled parameter estimate is obtained by using a weighted combination of
estimates across different models in which the weights are proportional to the posterior
probability of each model. Raftery focuses on applications with a finite number of
alternative models. Our approach involves an infinite number of alternative models
implied by the continuous and unbounded prior on c. In our approach, the likelihood of
different models is determined by the prior distribution for ¢ as opposed to the posterior
model probabilities.
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