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Abstract

Political relationships often vary over time but standard models ignore tem-

poral variation in regression relationships. We describe a Bayesian model

that treats the change-point in a time series as a parameter to be estimated.

In this model, inference for the regression coefficients reflects prior uncer-

tainty about the location of the change point. Inferences about regression

coefficients, unconditional on the change point location, can be obtained by

simulation methods. The model is illustrated in an analysis of real wage

growth in 18 OECD countries from 1965–1992.



1. Introduction

Conventional statistical models fail to capture historical variability in polit-

ical relationships. These models are poorly suited for analyzing periods in

which there are basic shifts in institutions, ideas, preferences or other social

conditions (Büthe 2002; Leiberman 2002). Despite the limits of conventional

models, the importance of historical variability in political relationships is

widely claimed. Historical institutionalists in comparative politics offer some

substantive motivation: “Political evolution is a path or branching process

and the study of points of departure from established patterns becomes es-

sential to a broader understanding of political history” (Thelen and Steinmo

1992, 27). Leiberman (2002, 96) makes a similar point: “What we are after

is an explanation not of ordinary predictable variation in outcomes but of

extraordinary change, where relationships among explanatory factors them-

selves change.”

Statistical analysis can begin to meet this challenge by examining tem-

poral instability in quantitative relationships. In the analysis of regression

models, temporal instability is studied in two main ways. First, researchers

offer explicit theories about the timing of structural breaks in regressions

(e.g., Richard and Kritzner 2002; Schickler and Green 1997; McLaughlin,

Gates, and Hegre 1999). Second, an influential sociological paper by Isaac

and Griffin (1989) rejects “a-historicism in time series analysis” in favor of

an historically-sensitive approach in which structural instability is an ever-

present possibility.

Specific theories of the timing of structural breaks lead to formal tests of

change points, while the “historical time series analysis” of Isaac and Griffin

(1989) takes a diagnostic approach. Where specific theories are proposed,

a change point in the regression is usually specified a priori and modeled
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with a dummy variable for time points after the change point. The change

point dummy might be used to describe a mean shift in the dependent vari-

able or also to allow for a change in the effects of covariates. For exam-

ple, Richards and Kritzer (2002) argue that Supreme Court decisions are

shaped by historically-variable jurisprudential regimes. A regime of content-

neutrality in freedom of expression cases was established by several decisions

in 1972. The effects of attitudes of the justices on free expression cases is

smaller after the establishment of the new regime. Inference about the dif-

ference in effects before and after 1972 is provided by a chi-square test. In

contrast, the diagnostic approach proceeds without a formal test of a para-

metric model for a change point. Structural instability is detected, for exam-

ple, with plots of regression coefficients estimated for data within a window

of time that moves along the series (Griffin and Isaac 1989, 879).

Formal parametric tests and diagnostic methods each have different lim-

itations. Say we test for a mean shift in some outcome at time θ. Data

indicating a break before θ should count against the hypothesis, but the ob-

served difference in means before and after θ may lead us to find in favor of

our hypothesis. Formal tests at least provide an inference about a change

point. Searching for change points with diagnostics risks mistaking random

variation for structural change. Also, if a model is fit after diagnostics are

used to locate a change point, conventional t-statistics and p-values do not

reflect prior uncertainty about the timing of structural shifts.

This paper describes a simple Bayesian models for change points that

combines the advantages of diagnostic and parametric approaches but ad-

dresses their limitations. Parametric models assume the location of a change

point, but diagnostic methods allow the timing of change to be discovered

from the data. Like diagnostic methods, the Bayesian analysis treats the
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timing of change as uncertain and the location of a change point is a param-

eter to be estimated. This approach allows evidence for a change before a

hypothesized date to count against the hypothesis. Like parametric models,

the Bayesian model yields statistical inferences about regression coefficients.

However, these inferences reflect prior uncertainty about the location of the

change point which is unaccounted in conventional models.

The Bayesian change point model can be estimated using the Gibbs sam-

pler. Although the model is relatively simple, estimation is computer in-

tensive and requires some programming facility. We thus describe a simple

alternative method that can, in part, be calculated using standard regression

output.

2. An Ad-Hoc Method for Studying Change Points

If we think that the effects of causal variables change over time, we could

model this with a dummy variable that takes the value of zero up to the time

point marking the end of the first regime, and the value of one thereafter. For

example, Isaac and Griffin (1989) studied the relationship between strikes and

labor union density in the United States. They argued that the relationship

between strikes and unionization changed after the Supreme Court upheld the

National Labor Relations Act in 1937. To capture this changing relationship,

we could define a dummy variable It that equals 0 for each year up to 1936,

and 1 for years 1937 and following. A model for the dependence of strikes,

St, on unionization, Ut, would then be written:

St = β0 + β1Ut + β2It + β3ItUt + et,

where et is an error term. Before 1937, the effect of unionization on strikes

is given by the regression coefficient, β1. After 1937, the effect is β1 + β3.
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We can write the dummy variable more generally as a function of the

change point year, It(1937). Even more generally, we can replace a specific

change point with a variable, θ, whose value is not yet specified. In this case,

the Isaac-Griffin model would be written:

St = β0 + β1Ut + β2It(θ) + β3It(θ)Ut + et.

In addition to the regression coefficients, the model now has the change point,

θ, to estimate.

How can we estimate the location of the change point? A simple method

tries a range of values for θ and examines the goodness of fit of the model. We

could begin by assuming that the change point for the Isaac-Griffin model

came in 1915 rather than 1937. Under this specification, the variable It(θ =

1915) = 0 for years before 1915, and It(θ = 1915) = 1 for years 1915 and

after. We fit a model with this period effect, and record the R2 statistic.

Next we try θ = 1916 and so on. Calculating R2 for θ = 1915, 1916, . . . , 1950

yields a sequence of R2 statistics which could be plotted. We can then choose

the value of θ with the maximum R2.

We illustrate this approach with some artificial data where the location

of a change point is known. Two time series of length 100, xt and yt, are

generated. A set of fixed values is chosen for xt. The dependent variable, yt,

is generated according to:

yt = .5 + .5xt + .5It(37) + .4It(37)xt + et,

where It(37) is a dummy variable that equals 0 up to t = 36, and 1 from

t = 37, . . . , 100, and et consists of 100 random deviates generated from a

normal distribution with mean 0, and standard deviation .5. With these

artificial data, the change point θ = 37. The data are shown in Figure 1.
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The time series (top panel) provide a small suggestion of a change point at

t = 37 but a clearer picture is given by the scatterplot in the lower panel. The

lower panel shows that the regression line for the first regime is supported

mostly by low values of xt, while the regression line for the second regime is

supported mostly by large values fo xt. The difference in slopes is relatively

small, but the difference in intercepts is clearly indicated.

Implementing our ad-hoc method to estimate the change point, we fit 81

regressions models with ordinary least squares (OLS), trying change points

from θ = 10, . . . , 90. These 81 models yield a time-series of R2 statistics

(Figure 2). The maximum R2 comes at θ = 41, close to, but not exactly

equal to, our known change point of θ = 37.

This ad-hoc method of searching for the best-fitting change point has

a good statistical justification. Assuming that the error term is normally

distributed, the time series of R2 statistics is proportional to the profile log

likelihood for θ. The time point of maximum R2 (t = 41 for our artificial

data) is the maximum likelihood estimate of θ. Defining the dummy variable

and fitting the time series is easily done using standard statistical software.

Thus, maximum likelihood estimation of θ is simple, if somewhat laborious.

Having estimated the change point, θ, how do we estimate the regression

coefficients? A naive approach estimates the coefficients conditional on the

maximum likelihood estimate of θ. After estimating θ̂ = 41, say, we can

calculate the regression coefficients, their standard errors and p-values using

OLS. Conventional standard errors and p-values will be too small, however,

increasing the risk of an incorrect inference of statistically significant effects.

These inferences are optimistic because the model assumes with certainty

that θ = 41 for the purposes of calculating the coefficients, but θ itself is

uncertain and estimated from the data. By using the data to search for
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the best-fitting model and to estimate that model’s coefficients, significant

results are more likely due to random variation than conventional p-values

suggest (Freedman 1983). From a Bayesian perspective, inferences about

the coefficients are optimistic because we have not correctly accounted for

our uncertainty about θ. In sum, the ad hoc method can be used for max-

imum likelihood estimation of θ but should should not be used to estimate

regression coefficients because it ignores uncertainty about the location of the

change point. The Bayesian model averages over this uncertainty to obtain

correct inferences about the coefficients.

3. The Bayesian Change-Point Model

Consider a regression model for the dependent variable, yt, of the form:

ŷt = β0 + β1xt + β2It(θ)t + β3It(θ)txt t = 1, . . . , T,

or equivalently in matrix notation,

ŷ = Xθβ, (1)

where the change-point indicator, It(θ) = 0 for t < θ and It(θ) = 1 for

t ≥ θ, y is a vector of observations on the dependent variable, the matrix Xθ

includes all regressors, and β is a vector of regression coefficients. We write

Xθ, as a function of θ because different change points will yield different

regressors. Assuming that, y conditionally follows a normal distribution, the

contribution of an observation, yt, to the likelihood of θ is:

Lt(θ; yt) ∝
1√
2πσ

exp

[
−(yt − ŷt)

2

2σ2

]
, (2)

where the likelihood depends on θ through the regression function in equation

(1). For a given change point, say θ = k, the likelihood evaluates to L(θ =
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k;y) ∝ ∏
t Lt(θ = k; yt). Here, the error variance is written as σ2, but below

we shall work with the precision, τ = σ−2. Because the likelihood function

for this model is discontinuous for discrete values of θ, it is difficult to obtain

unconditional inferences about the regression coefficients, β, using standard

likelihood methods.

3.1 Prior Distributions for the Change-Point Model

We can obtain inferences about the change-point and the coefficients, using

a Bayesian approach which specifies prior distributions for the parameters.

The priors and the likelihood can be written as follows:

p(τ) = Gamma(n0, s0)

p(β) = N(β0,V0)

p(θ) = (T − 1)−1, θ = 1, . . . , T − 1

p(y|Xθ) = N(ŷ, τ−1),

where Gamma(a, b) is a Gamma distribution with shape parameter, a and

expectation, a/b. The prior for θ is a discrete uniform distribution that

allocates equal prior probability to each time point. A noninformative prior

for τ sets n0 and s0 to small positive numbers, say .001. A noninformative

prior for the coefficients sets β0 = 0 and V0 to a diagonal matrix with large

prior variances, say 100.

Estimation of this model can be approached in three ways. Full condi-

tional posterior distributions can be used to form a Gibbs sampler for poste-

rior simulation. Alternatively, Chin Choy and Broemeling (1980) derive an

expression for the marginal posterior of θ. Even more simply, inference for θ

and the coefficients might be based on the profile log-likelihood, a function

of the residual sums of squares from OLS regressions.
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3.2 The Gibbs Sampler

The Gibbs sampler is a method for Bayesian estimation that simulates draws

from the posterior distribution. To implement the Gibbs sampler, posterior

distributions are specified for each parameter conditional on all the other

parameters in the model. Sampling from these full conditional posterior

distributions ultimately yields draws from the unconditional posterior distri-

bution (e.g., Jackman 2000). In principle, the Gibbs sampler is an extremely

flexible tool for Bayesian inference allowing the estimation of any model for

which full conditional posteriors can be specified.

The Gibbs sampler begins by setting initial values of the change-point, the

precision, and the regression coefficients. The sampler randomly draws one

of these parameters—written θ∗, τ ∗ and β∗—conditional on current values

for the others:

1. Draw the precision, τ ∗, from Gamma(n0 + n/2, s0 + SS∗/2), where the

current value of the sums of squares, SS∗ =
∑

e∗t , and e∗t = yt−x′
θ∗tβ

∗.

2. Draw the vector of regression coefficients from the multivariate normal

distribution, N(β1,V1), with mean vector, β1 = V1(V0β0 + τ ∗X′
θ∗y),

and covariance matrix, V1 = (V−1
0 + τ ∗X′

θ∗Xθ∗)
−1.

3. Draw the change point from the discrete distribution, p(θ = t|y) =

L∗(θ = t;y)/
∑

t L
∗(θ = t;y) where the likelihood in equation (2) is

evaluated at each time point, θ = 1, . . . , T − 1 using current values of

the parameters, β∗ and τ ∗.

The algorithm is termed a blocked Gibbs sampler, because Step 2 updates

the block of all coefficients, under all the change points. The Gibbs sampler

can also accommodate a more general model in which a regression with no
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change point is included a priori. For this specification, p(θ|y) in step 3 also

evaluates the likelihood of y = Xβ, including just the covariate xt, setting

coefficients β2 = β3 = 0.

In the simulation experiments below we obtained good performance for

a small regression on one predictor with a burn-in of 100 iterations, and

a sequence or chain of 2000 iterations. The method is computer intensive

compared to some other Gibbs sampler applications because the probability

of θ must be evaluated for every time point for every iteration. The Gibbs

sampler is useful because it automatically provides inferences about the re-

gression coefficients. The algorithm can also be generalized to introduce

informative priors for the coefficients or θ if we have substantive knowledge

about the effects or the location of the change point. Other likelihoods can

also be specified for y. For example, the Gibbs sampler could be used to

detect structural breaks in event history models or in panel data with het-

eroegeneous error variances. Results for an error-heterogeneity model with

an informative prior on θ are reported in the application below.

A significant practical challenge for analysis with the Gibbs sampler in-

volves assessing convergence of the algorithm. If the Gibbs chain is not

stationary and the mean of the chain shifts as it moves over the parameter

space, the algorithm may not adequately sample from the unconditional pos-

terior distribution. In practical applications, diagnostics should be used to

assess convergence (Carlin and Louis 2002, 172–183, review many of the op-

tions). Several parallel chains should also be run with widely spaced starting

values. Because the posterior distribution for the change-point has a simple

form, alternative simulation methods are available that offer immediate con-

vergence. These alternative methods stochastically sample from the posterior

distributions of the coefficients, conditional on different change points.
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3.3 Stochastic Sampling from the Conditional Posterior

The Gibbs sampler is computationally intensive, requiring thousands of it-

erations, but the posterior distribution of θ can be calculated exactly and

quickly. Although analytical results do not provide an expression for the

unconditional posterior distribution of the regression coefficients, the condi-

tional posteriors given θ are known to be multivariate t whose means and

covariance matrices are easily calculated. The unconditional posterior for

the coefficients is a stochastic mixture of these t distributions. Once the pos-

terior distribution for θ is calculated, posterior simulation of the coefficients

can proceed quickly.

A closed form expression for the posterior probability distribution of θ is

derived by Chin Choy and Broemling (1980):

p(θ|y)

 ∝ D(θ)−n1|M1|−1/2, θ = 1, . . . , T − 1

= 0, θ = T
(3)

where,

n1 = n0 + T/2

D(θ) = s0 + {[y −Xθβ1]
′y + [β0 − β1]

′M0β0}/2

β1 = M−1
1 [M0β0 + X′

θy]

M1 = X′
θXθ + M0

M0 = V−1
0 s0/n0.

With diffuse priors for the coefficients and precision, the posterior dis-

tribution of θ may be approximated even more simply by the likelihood in

equation (2). We write the posterior derived by Chin Choy and Broemeling

that explicitly incorporates prior information as pB(θ|y), and the posterior
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based just on the likelihood function as pL(θ|y). We compare these alterna-

tive methods for calculating θ and regression coefficients in a Monte Carlo

experiment below.

Posterior probabilities of the change points, pB(θ|y) or pL(θ|y), can be

used for Bayesian inference with stochastic sampling from the conditional

posterior (SSCP). The unconditional posterior distribution of the coefficients

is a mixture of t distributions located at the conditional posterior means,

where the mixture probabilities are the posterior probabilities of θ,

p(β|y) =
T−1∑
θ=1

t(β1,V1, 2n1)p(θ|y),

where

V1 = M−1
1 D(θ)/n1.

With diffuse priors, V1 is approximately equal to the OLS covariance ma-

trix, estimated for a given value of θ. SSCP proceeds by obtaining N draws

of indices, t = 1, . . . , T − 1, with probability p(θ|y). The frequency of

each index indicates the number of draws to obtain from each conditional

posterior distribution of the coefficients. Simulating from the multivariate

t(β1,V1, 2n1), begins by generating a draw from the multivariate normal

distribution N(β1,V1) and scaling by w1/2, where w is a random draw from

a χ2/2n1 on 2n1 degrees of freedom. In contrast to the Gibbs sampler, con-

vergence is immediate with the SSCP algorithm. Each draw from the condi-

tional posterior distribution of the regression coefficients is independent, and

the posterior distribution for θ is calculated explicitly, rather than simulated.

Large numbers of iterations can be generated quickly to accurately map the

shape of the unconditional posterior distribution of coefficients.

The change-point model involves as a type of Bayesian model averaging

(Western 1996; Bartels 1997). Bayesian model averaging provides inferences
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about parameters when a variety of different models, M1, . . ., MK , may be

true. For each possible model, a posterior model probability, p(Mi|y) is

calculated. Posterior distributions of parameters are weighted sums of the

posteriors under each model where the weights are given by p(Mi|y). For

the change point problem, a range of models is defined by different change

points. We are uncertain about the correct regression model because we

are uncertain about the location of the change point and the regressors,

Xθ. Like the usual model averaging analysis, inference about the coefficients

proceeds by taking the sum of their conditional posteriors and weighting by

the posterior probability of each model. In the change point analysis, the

probability of each model is given by the posterior distribution of the change

point, p(θ|y).

If a likelihood function can be written for the model parameters, why

introduce a Bayesian model for the change point? Maximum likelihood and

Bayesian inference with a uniform prior on θ produce similar results for

the location of the change-point, but the method diverge in their approach

to the regression coefficients. Maximum likelihood estimation of the coeffi-

cients conditions on the maximum likelihood estimates of θ. This approach

is asymptotically justified where long time series reduce uncertainty about θ.

In practice, time series are often short and considerable uncertainty accom-

panies the location of θ. Bayesian inference accounts for this uncertainty by

integrating over, rather than conditioning on, θ. Bayesian standard errors

for coefficients thus tend to be larger than the maximum likelihood estimates

because the Bayesian analysis provides a more realistic accounting of prior

uncertainty.

The Bayesian analysis also allows prior information about the location of

a change point to be used in the analysis. In many applications, change points
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are hypothesized because of specific historical events that might transform

a regression regime. The Bayesian model allows the location of the change

point to be uncertain, but also allows some changes points to be more likely

than others. In this way, substantive information about a particular historical

process can be used in a probabilistic way.

Large research literatures in econometrics and statistics have examined

models for change points in time series. The diagnostic approach of Isaac and

Griffin (1989) was statistically justified by Brown, Durbin, and Evans (1975)

who propose plots of the cumulative sum of recursive residuals—residuals

obtained from out-of-sample predictions of subsets of a time series. A more

elaborate parametric structure was placed on the analysis of change points

by Box and Jenkins. Their transfer-function models allowed a mean shift

in a response variable, where the transfer function specified the location of

a change point a priori (Box, Jenkins, and Reinsel 1994). While transfer-

function models specify allow complex dynamics than often seen in applied

work, the analysis does not allow the location of a change point to be inferred

from the data.

Modern time series analysis has proceeded in a variety of directions. Test

statistics based on the theory of Brown et al. (1975) can be inaccurate in the

presence of trended data. Hansen (2000) proposes a general test that also

allows for structural change in regressors. Bai and Perron (1998) consider an

alternative generalization in which a number of change points is estimated.

Their analysis describes tests for the number of change points and a simple

sequential method for estimation. Multiple regimes might also be specified

by allowing the parameters of a model to evolve according to a time series

process. These time-varying parameter models allow coefficients to change

through an autoregressive process in which parameters are updated at each
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point in a series (Beck 1983; Harvey 1989). This model is more flexible than

the Bayesian change point model, allowing for an indeterminate number of

regimes. However, the time-varying parameters models are highly parame-

terized and estimates can depend closely on initial values and distributional

assumptions about parameters. Like Bayesian models, time-varying param-

eter models feature parameters that are viewed as random quantities.

Closer to the current approach that specifies the number of regimes a

priori, a switching regimes model defines a response variable controlled by a

Markov process. For this Markov-switching model, a transition matrix de-

scribes the probability of moving from one regime to another for each time

point in a series (Hamilton 1989). The Markov-switching model is similar

to the Bayesian change point model. Both models draw a probability dis-

tribution over the space of possible regimes. Like the change-point model,

structural coefficients in the switching model are a stochastic mixture where

the mixture weights are given by the probability of being in a particular

regime (Hamilton 1994, 685–99). Bayesian analysis of the switching model,

using the Gibbs sampler, is detailed by Kim and Nelson (1999). They argue

for posterior simulation in a Bayesian model over maximum likelihood be-

cause the method yields finite-sample inferences and allows the inclusion of

prior information.

While temporal instability in regression is an active area of research, ap-

plied researchers working with historical data in the fields of comparative

politics and international relations seldom model structural changes in time

series. The current Bayesian change point model combines a simple struc-

tural specification with a coherent approach to finite sample inference. It

is less rigid than the transfer-function model that specifies the change point

a priori, but offers more structure than the time-varying parameter model
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that makes no assumptions about the number of regression regimes. Like the

Markov-switching models, the Bayesian change-point model takes a proba-

bilistic approach to regime change in regression.

4. A Monte Carlo Experiment

We compare the performance of the Gibbs sampler, and the SSCP based

on pB(θ|y) and based on pL(θ|y) with a Monte Carlo experiment. In this

experiment we generate y from:

yt = β0 + β1xt + β3It + β4Itxt + et, t = 1, 2, . . . , 30,

where β0 = .5, β1 = .2, β2 = −.3, β4 = .2, It = 1 if t ≥ 21 and 0 otherwise

(θ = 21), x is a set of fixed regressors and e is drawn randomly from a

normal distribution with zero mean and standard deviation .5. We generate

1000 vectors, y, and estimate the change-point and the coefficients using our

three methods. To speed computation, a uniform prior is placed on θ between

t = 3 and t = 27. With 2000 iterations of the Gibbs sampler, computation

time was about 2 minutes using interpreted code written in R. Computation

time with the other methods was only a second or so. (R code for the Gibbs

sampler and the SSCP method is provided in the Appendix.)

Monte Carlo results for θ are reported in Table 1. We examine the per-

formance of the different methods by calculating the average value of the

point estimate, E(θ̂). For the Gibbs sampler, θ̂ is the modal value of θ∗ over

the 2000 iterations of the Gibbs chain. For Chin Choy and Broemeling’s

(1980) closed-form Bayesian calculation, θ̂ is given by the posterior mode—

that value of θ that maximizes pB(θ|y). Finally, θ̂ for the method based

on the likelihood function is that which maximizes pL(θ|y) or equivalently,

L(θ;y). Bias for each method is given by E(θ̂|y)− θ. The dispersion of the
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estimates over Monte Carlo trials is measured by the standard deviation of

the point estimates, SD(θ̂). We also report the mean squared error (MSE)

given by the squared bias plus the variance of θ̂.

Monte Carlo results show that all three methods do similarly well, identi-

fying the change point in the regression at t = 21. All three methods show a

small upward bias. Estimates based on the likelihood are less dispersed than

the Gibbs sampler estimates and the Bayesian closed-form calculation. This

is because prior information about the precision or regression coefficients

does not enter into the maximum likelihood estimation of θ. Although prior

information for the Bayesian methods is intended to be diffuse, Bayesian es-

timates of θ integrate over uncertainty about τ and β. Consequently, mean

squared error is also somewhat higher for the Bayesian methods than the like-

lihood method. Estimates from the Gibbs sampler are also more dispersed

than those from the closed-form calculation. This may be due to simulation

error in the Gibbs chain that can be reduced by running the chain for longer.

Table 2 compares the performance of the three methods for Bayesian

estimation of the regression coefficients. The coefficients are estimated by

their posterior expectations—averages of the simulated coefficients. In this

case we report the average of the posterior expectations over 1000 Monte

Carlo trials, the average of the posterior standard deviation, and the mean

squared error calculated as the squared bias of the posterior expectation

plus its Monte Carlo variance. Means of the posterior expectations indicate

that all three methods yield approximately unbiased estimates of the regres-

sion coefficients. Biases for the Gibbs sampler and SSCP with pB(θ|y) are

slightly smaller than SSCP based on pL(θ|y). The bias in estimates based

on the likelihood approximation is more than offset by the relatively small

variance. Mean squared error is consistently smaller for Bayesian estimation
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with pL(θ|y) compared to the other methods.

In sum, Monte Carlo results reveals only small differences in the perfor-

mance of our three methods for estimating a regression with a change point.

Bias in estimates of both the change-point parameter and the regression co-

efficients is small, and variability in standard errors across the methods is

not substantively large. Computationally, the SSCP approaches are much

simpler than the Gibbs sampler. Although the SSCP methods estimate the

regression coefficients with simulation, they involve only random generation

from known multivariate distributions.

5. Application: Real Wage Growth in OECD Countries

Finally, we apply the Bayesian change point model to an analysis of real

data. We analyze the pooled cross-sectional time-series data that is common

in comparative research in political science and sociology. The challenges of

modeling change points in panel data are similar to those arising in univari-

ate series. Structural breaks in univariate series are usually motivated by

an exogenous change in surrounding conditions that precipitates a change in

regression regimes. With panel data, such exogenous events are thought to

induce changes in the regressions for each unit in the sample. For example,

Kenworthy’s (2002) analysis of unemployment rates in 16 OECD countries

suggests that the impact of corporatist institutions may have declined from

the 1980s to the 1990s as local-level collective bargaining increasingly de-

termined wages. Kenworthy (2002) thus splits his panel data into two time

periods 1980–1991 and 1992–1997 to allow for the change point. This ap-

proach to panel data analysis and our change point model both assume that

the timing a structural change is identical for all units (countries) in the

sample.
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Our application re-analyzes the data of Western and Healy (1999) who

examined real wage growth in 18 OECD countries for the period, 1965–

1992. They argued that this period can be divided into two wage-setting

regimes. Under the first regime unions were able to raise wages and capture

the benefits of productivity growth. Under the second regime, following the

first OPEC oil shock in 1973–1974, wage growth became much more sensitive

to market conditions (inflation and unemployment) and the positive effects

of unions and productivity growth on wages were weakened.

A summary of the wage growth data is reported in Table 3. The wage fig-

ures show the average annual growth in hourly manufacturing wage rates. In

all of the 18 countries analyzed, the average annual rate of wage growth was

slower in the period 1983–1992 than from 1966–1973. There is also substan-

tial cross-national heterogeneity in average wage growth. Some countries,

like Austria and Germany have a high general level of wage growth over the

entire 1966–1992 period. Other countries, like the United States and New

Zealand, have a low general level of wage growth.

Descriptive statistics for the independent variables in the analysis are re-

ported for each country in Table 4. Interest particularly focuses on changes in

the effects of bargaining centralization, labor government, and union density.

We expect that the effects of these measures of labor’s power resources be-

came weaker following the end of the golden age of postwar economic growth.

For country i at time t, the shift in wage-setting regimes is modeled as:

yit = α0 + x′
itα + It(θ)β0 + It(θ)(x

′
itβ) + εit, (4)

where covariates are collected in the vector, xit, and the dummy variable

It(θ) equals 1 for t ≥ θ and 0 otherwise. The error, εit, is assumed to follow

a normal distribution. We remove fixed effects from the data and reduce

18



correlations among the predictors by subracting country-level means from

yit and xit (Hsiao 1986, 31). The model is fit to the mean-deviated data.

Exploratory analysis strongly indicates a change point in 1976. By fitting

linear regressions for θ = 1966 . . . , 1990, we see the best fitting model is ob-

tained at θ = 1976 (Figure 3). The R-square plot of Figure 3 is approximately

proportional to the profile log likelihood of θ and the log posterior marginal

distribution under a flat prior. Because support for the change point is pre-

sented in the log scale, Figure 3 tends to overstate evidence for structural

break in the time series in nearby years. In fact, calculation in the unlogged

scale show that the posterior probability of a change point in 1976 is 92%.

For these data, conventional analysis (that conditions on the change point)

and Bayesian analysis (that allows prior uncertainty) yield similar results.

We compare an OLS model, assuming θ = 1976, to two Bayesian models.

The first puts a uniform prior on θ and constrains the error variance to be

constant across countries. The second incorporates two realistic features of

possible applications. Researchers analyzing panel data are often concerned

about error heterogeneity across units. Beck and Katz (1995) suggest using

a sandwich estimator to obtain consistent estimates of OLS standard errors

(although the method is subject to finite sample biases, Long and Ervin

2000). In Bayesian or likelihood inference, error heterogeneity is accom-

modated through the model specification. A simple model for the current

application fits a separate error variance for each country. Each of the 18

error variances is given an inverse gamma prior distribution. We also intro-

duce an informative prior, by placing about half the probability of the time

series on θ between 1968 and 1973. These dates mark the initial increase in

inflation throughout the OECD area and the first OPEC oil shock. The two

Bayesian models are estimated using the Gibbs sampler. Results are based
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on two parallel Gibbs chains of 10,000 iterations, after a burn-in of 1,000 it-

erations. Convergence diagnostics and inspection of the trace plots indicate

adequate mixing over the parameter space. (WinBugs code for these models

is reported in the appendix.)

Results for the regression coefficients in Table 5 contrast with OLS esti-

mates, using the 1976 change point, with the Bayesian estimates. The OLS

results suggest only the significant effect of productivity growth on real wage

growth from the mid-1960s to the mid-1970s. The estimate for the period

effect, β0 in second column of Table 5 indicates that real wage growth slowed

by about 3 percentage points across the OECD. Results for the post-1975

regime show that the effects of all predictors have moved in the negative di-

rection. However, only the inflation effect is highly likely to have shifted from

the first to the second regime. Separate analysis indicates that the bargain-

ing level and inflation effects in the second regime are likely to be negative.

Comparing the OLS results to the first Bayesian model with constant error

variance suggests few differences in the results. While the Bayesian analysis

tends to produce more conservative results than conventional analysis with-

out prior information, evidence for the break point is so strong in the current

data that it makes little difference if we condition on the assumption that

θ = 1976.

Columns 5 and 6 of Table 5 report results for the error heterogeneity

model that also includes an informative prior for θ. The prior on θ places

about half the prior probability from 1968 to 1973. Still the posterior expec-

tation of θ at 1976 is almost identical to that under the noninformative prior.

In the first regime, the error-heterogeneity model provides relatively strong

evidence for the effects of left government, unemployment, and productivity

growth. Slight improvements in the results may be due heteroscedasticity in
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the data that contributes to inefficiency in OLS. In the second regime, there

is strong evidence that effects of left government and inflation have become

increasingly negative. The final column of Table 5 shows the net effects of

the predictors in the second regime. Posterior distributions of these net ef-

fects can be calculated directly from the Gibbs output. Summing iterates of

coefficients from the first and second regimes gives draws from the posterior

distribution of the net effects. The net effects suggest that the coefficients of

unemployment, union density, and inflation became large and negative after

the mid-1970s. On the other hand, we cannot confidently include that wages

rise with productivity as they did in the late 1960s.

6. Discussion

Although political scientists and sociologists have become sensitized to the

possibility of historical variability in quantitative results, conventional meth-

ods for studying that variability have several important shortcomings. Com-

monly, a putative change point in a time series is chosen a priori, and this

is modelled with a dummy variable or the sample is split into two periods.

In this approach, the location of the change point is simply assumed and

an analysis may yield positive results even though the data may strongly

indicate a change point at a different time. Alternatively, Isaac and Griffin

(1989), in an important paper on temporal instability in regression, suggest

a diagnostic approach that allows the location of a change point to be found

empirically. Although their approach has some advantages over assuming

a change point’s location, the diagnostic method has not been widely used

because it fails to provide statistical inferences about structural change

We describe a Bayesian change-point analysis of structural change in a

time series. The Bayesian analysis, like Isaac and Griffin’s (1989) method,
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helps diagnose the location of structural change in regression relationships.

But like standard parametric approaches to period effects, the Bayesian anal-

ysis also provides statistical inferences about regression coefficients. Improv-

ing over both the usual approaches, Bayesian analysis also provides a statis-

tical inference about the location of the change point. Indeed, the location

of the change point can be simply found with standard statistical software.

A Monte Carlo experiment showed that Bayesian change point model is fea-

sibly estimated with the Gibbs sampler or by stochastically sampling from

the conditional posteriors for the regression coefficients.

The Bayesian model was illustrated in an analysis of real wage growth

in the OECD countries between 1966 and 1992. Although many researchers

claimed that recent period of slow economic growth marks the end of the

golden age of postwar economic expansion, the idea of two wage regimes

in the postwar political economy has not been rigorously examined. The

Bayesian analysis provides clear evidence of a structural break in the wage

growth process in the 1976. This analysis indicates the clear importance of

a sensitivity to historical variation in large-scale causal process. We believe

the analysis also underlines the importance of methods that can detect and

provide statistical inferences about such variability.
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Appendix 1. R Code for the Gibbs sampler and SSCP

# bcp.R

# R code for Bayesian change point estimation described in the paper,

# Bruce Western and meredith Kleykamp, "A Bayesian Change Point Model for

# Historical Time Series Analysis." The paper describes a Gibbs sampler

# and several approaches to stochastic sampling from the conditional

# posterior (SSCP) of regression coefficients.

# Bruce Western, April 27, 2004

library(MASS)

#--------------------------------------------------------------

# Defining some useful functions

#--------------------------------------------------------------

# Linear predictor function

lp <- function(x,b) as.vector(apply(t(x)*b,2,sum))

# Normal likelihood function

n.like <- function(eta,y,sigma) {

ll <- sum(dnorm(y,mean=eta,sigma,log=TRUE))

exp(ll) }

# Determinant of a matrix

det <- function(x) prod(eigen(x)$values)

#-------------------------------------------------------------

# Gibbs function

#-------------------------------------------------------------

gibbs <- function(X, y, tstar=length(y)/2, iter=500, burn=100) {

# User supplies X, a matrix including unit vector in col. 1 for intercept

# y, a dep var vector

# tstar, start value for the change-point
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# iter, number of iteration in the gibbs sampler

# burn, number of burn-in iterations

# OLS fit

out <- lm(y~X-1)

p <- ncol(X)

n <- length(y)

# Setting up data

grid1 <- (p+1):(n-p-1)

XX <- as.list(grid1)

for(i in grid1) {

tt <- (1:n)>=i

XX[[i-min(grid1)+1]] <- cbind(X, X * tt)

}

# Priors

pb <- rep(0,2*p)

pvb <- diag(rep(1e6,2*p))

pvbi <- diag(1/rep(1e6,2*p))

ps2 <- .001

pdf <- .001

# Start values

bstar <- rep(out$coef,2)

# Initializing parameter vectors

beta <- h <- tt <- NULL

k <- length(grid1)

temp <- rep(NA,k)

thetas <- grid1
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# Posterior variance quantities

posta <- (n/2)+pdf

for(i in 1:(iter+burn)) {

indt <- as.numeric((1:n)>=tstar)

XZ <- cbind(X, X*indt)

xx <- crossprod(XZ)

xy <- crossprod(XZ,y)

yhat <- lp(XZ, bstar)

estar <- y-yhat

posts2 <- ps2+sum(estar^2)

hstar <- rgamma(1,posta,rate=posts2/2)

postvb <- solve(pvbi+(xx*hstar))

postb <- as.vector(postvb %*% (xy*hstar))

bstar <- as.vector(mvrnorm(1,postb,postvb))

temp <- unlist(lapply(lapply(XX,lp,bstar),n.like,y,sqrt(1/hstar)))

postt <- temp/sum(temp)

tstar <- sample(thetas, 1, prob=postt)

if(i>burn){

beta <- rbind(beta,bstar)

h <- c(h,hstar)

tt <- c(tt,tstar)

} }

mode <- table(tt)

mode <- names(mode)[mode==max(mode)]

output <- list(grid1,tt,h,beta,as.numeric(mode))

names(output) <- c("time","theta","precision","beta","mode of theta")

output

}

#-------------------------------------------------------------
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# SSCP function

#-------------------------------------------------------------

sscp <- function(X, y, pmu, pvb, pa, pb, bayes=T) {

# User supplies: X, a matrix including unit vector in col. 1 for intercept

# y, a dep var vector

# pmu, vector of prior means

# pvb, prior covariance matrix for coefs

# pa, prior degrees of freedom

# pb, prior sums of squares

# bayes=T, coefs based on bayes posterior probs

# bayes=F, coefs based on llik posterior probs

n <- length(y)

p <- ncol(X)

# Grid over which break point is searched

ind <- (p+1):(n-p-1)

tau <- solve(pvb)*pb/pa

betam <- betapv <- ppr <- as.list(ind)

ppm <- ll <- rep(NA,length(ind))

postb <- NULL

astar <- pa + (n/2)

for(i in ind) {

indt <- as.numeric((1:n) >= i)

xm <- cbind(X, indt*X)

ols <- lm(y ~ xm - 1)

yhat <- predict(ols)

sigma <- summary(ols)$sigma

ll[i-p] <- n.like(yhat, y, sigma)
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pxpx <- crossprod(xm) + tau

betam[[i-p]] <- solve(pxpx) %*% (tau%*%pmu + crossprod(xm, y))

e <- as.vector(y - (xm%*%betam[[i-p]]))

b2 <- as.vector(crossprod(pmu - betam[[i-p]],tau%*%pmu))

dm <- pb + sum(e*y)/2 + b2/2

ppr[[i-p]] <- (astar/dm) * pxpx

ppm[i-p] <- dm^(-astar) * det(pxpx)^(-.5)

}

ppm <- ppm/sum(ppm)

ppll <- ll/sum(ll)

output <- cbind(ppm,ppll)

dimnames(output) <- list(as.character(ind),c("Bayes","LL"))

# SSCP for coefficients

if(bayes) {

mixind <- table(sample(ind,10000,replace=TRUE,prob=ppm))

mode <- ind[ppm==max(ppm)] }

else {

mixind <- table(sample(ind,10000,replace=TRUE,prob=ppll))

mode <- ind[ppll==max(ppll)] }

newind <- as.numeric(names(mixind))

for(i in 1:length(newind)) {

mu <- as.vector(betam[[newind[i]-p]])

Sigma <- solve(ppr[[newind[i]-p]])

normb <- mvrnorm(mixind[i], mu, Sigma)

tb <- normb/sqrt(rchisq(1,astar)/astar)

postb <- rbind(postb,tb) }

output <- list(ind, output, postb, as.numeric(mode))

names(output) <- c("time","p(theta|y)","beta","mode of theta")

output

}
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Winbugs Code for the Analysis of OECD Data

# Model 1, constant error variance

model

{

for(i in 1:N) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha0 + inprod(alpha[],x[i,]) + beta0*J[i] + J[i]*inprod(beta[],x[i,])

J[i] <- step(yr[i] - cp - 0.5)

}

for(i in 1:p) {

alpha[i] ~ dnorm(0.0, 1.0E-6)

beta[i] ~ dnorm(0.0, 1.0E-6)

}

for(i in 1:T) {

priort[i] <- punif[i]/sum(punif[])

}

alpha0 ~ dnorm(0.0, 1.0E-6)

beta0 ~ dnorm(0.0, 1.0E-6)

cp ~ dcat(priort[])

tau ~ dgamma(.001, 0.001)

}

# Model 2, heterogeneous error variance

model

{

for(i in 1:N) {

y[i] ~ dnorm(mu[i], tau[cc[i]])

mu[i] <- alpha0 + inprod(alpha[],x[i,]) + beta0*J[i] + J[i]*inprod(beta[],x[i,])

J[i] <- step(yr[i] - cp - 0.5)

}
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for(i in 1:p) {

alpha[i] ~ dnorm(0.0, 1.0E-6)

beta[i] ~ dnorm(0.0, 1.0E-6)

}

for(i in 1:NC) {

tau[i] ~ dgamma(.001, 0.001)

}

for(i in 1:T) {

priort[i] <- prior[i]/sum(prior[])

}

alpha0 ~ dnorm(0.0, 1.0E-6)

beta0 ~ dnorm(0.0, 1.0E-6)

cp ~ dcat(priort[])

}
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Figure 1. The top panel shows 100-point times series for the artificial data, x

and y, where a change in the relationship between the variable occurs at time

point, t = 37. The bottom panel is a scatterplot of x against y, with two

regression lines fitting the time points, t < 37 (hollow points), and t ≥ 37

(solid points).

Figure 2. Time-series of R2 statistics, from regressions on artificial data for

x and y, θ = 10, 11, . . . , 90.

Figure 3. Plot of R2 statistics for linear regressions on wage growth data,

with change points θ = 1966 . . . , 1990, 18 OECD countries 1966–1992.
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Table 1. Monte Carlo results for the change-point parameter, θ, estimated

with the Gibbs sampler, the Bayesian closed-form expression of Chin Choy

and Broemling (1980), pB(θ|y), and posterior approximations based on the

likelihood, pL(θ|y).

E(θ̂) SD(θ̂) MSE

Gibbs sampler 21.405 2.259 7.076

pB(θ|y) 21.417 1.977 5.915

pL(θ|y) 21.336 1.286 3.439

Note: E(θ̂) is the average value of θ̂, the point estimate of the change point

in 1000 Monte Carlo trials; SD(θ̂) is the standard deviation of θ̂; the MSE is the

mean squared error given by the squared bias, [E(θ̂)−θ]2, plus the variance, V (θ̂),

where θ = 21.
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Table 2. Monte Carlo results for Bayesian estimation of the regression coeffi-

cients using the Gibbs sampler and SSCP methods using pB(θ|y) and pL(θ|y).

Gibbs pB(θ|y) pL(θ|y)

Sampler SSCP SSCP

β0 = .5 Mean .507 .530 .534

Mean SD .297 .277 .260

MSE .088 .078 .069

β1 = .2 Mean .199 .211 .211

Mean SD .083 .074 .057

MSE .007 .006 .003

β2 = −.3 Mean -.330 -.338 -.339

Mean SD .496 .463 .438

MSE .247 .216 .193

β3 = .2 Mean .203 .212 .214

Mean SD .092 .082 .065

MSE .008 .007 .004

Note: Mean is the average value over 1000 Monte Carlo trials of the posterior

expectation of the coefficient. Mean SD is the average posterior standard deviation.

MSE is the mean squared error given by the squared bias plus the variance of the

posterior expectation.
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Table 3. Summary of annual percentage growth in real hourly manufacturing

wage rates, 18 OECD countries.

1966–1973 1974–1982 1983–1992

Australia 2.14 1.30 -1.53

Austria 5.31 2.61 1.98

Belgium 5.91 2.90 .29

Canada 3.34 1.52 -.11

Denmark 5.75 1.70 1.15

Finland 5.55 1.17 2.19

France 5.06 3.11 .68

Germany 4.56 1.56 2.08

Ireland 6.32 3.77 .83

Italy 5.70 2.41 1.83

Japan 9.05 1.38 1.50

Netherlands 3.70 .94 .70

New Zealand 2.86 -.41 -2.05

Norway 3.79 2.00 1.73

Sweden 4.19 .22 .83

Switzerland 1.74 .67 .87

United Kingdom 3.15 1.01 2.76

United States 1.35 -.49 -.74

Average 4.38 1.45 .85

Source: Western and Healy (1999).
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Table 4. Means of the independent variables used in analysis of real wage

growth in 18 OECD countries, 1966–1992.

(1) (2) (3) (4) (5) (6)

Australia 5.03 .15 1.85 .68 .40 51.25

Austria 2.44 -.03 3.16 .33 .72 64.07

Belgium 6.93 -.06 2.80 .51 .23 70.46

Canada 7.60 -.04 1.28 .11 .67 34.57

Denmark 5.62 -.16 1.43 .78 .43 79.52

Finland 4.40 -.09 3.07 .63 .48 78.24

France 6.13 .00 2.74 .33 .31 18.60

Germany 3.68 .02 2.62 .33 .40 40.37

Ireland 7.79 .04 3.11 .54 .15 59.49

Italy 10.24 -.07 3.84 .77 .18 53.89

Japan 1.96 -.18 4.33 .33 .00 31.08

Netherlands 5.87 -.03 2.09 .63 .18 37.79

New Zealand 3.00 -.10 .90 .62 .34 40.45

Norway 2.53 -.07 2.63 .91 .56 63.34

Sweden 2.45 -.10 1.66 .85 .73 86.62

Switzerland .51 .02 1.49 .33 .29 33.28

United Kingdom 6.68 -.04 2.01 .33 .35 50.07

United States 6.18 .05 .80 .07 .26 23.22

Note: Column headings are as follows: (1) unemployment; (2) inflation (first

difference); (3) productivity growth; (4) bargaining centralization; (5) labor gov-

ernment; and (6) union density. Source: Western and Healy (1999).
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Table 5. Coefficients (standard errors) from normal linear and Bayesian

change point models of real wage growth, 18 OECD countries, 1965–1992

(N=483).

Bayesian Change Point Estimates

Constant σ2 Non-constant σ2

OLS Estimates First Second First Second Second Regime

1966–1975 1976–1992 Regime Regime Regime Regime Net Effects

(1) (2) (3) (4) (5) (6) (5)+(6)

Change point (θ) - 1976.00 - 1976.03 1976.02 -

(.19) (.19)

Intercept 1.80 -2.73 1.78 -2.72 1.43 -2.25 -.82

(.31) (.36) (.32) (.11) (.32) (.28) (.15)

Bargaining level -.41 -.82 -.41 -.82 .18 -1.27 -1.09

(.78) (.96) (.78) (.96) (.78) (.96) (.72)

Left government .57 -.88 .57 -.88 .85 -1.31 -.46

(.50) (.62) (.51) (.63) (.46) (.63) (.33)

Unemployment -.07 -.17 -.07 -.17 -.15 -.16 -.30

(.11) (.13) (.11) (.13) (.10) (.13) (.06)

Union density .08 -.55 .07 -.54 .01 -.44 -.43

(.21) (.31) (.21) (.32) (.19) (.32) (.20)

Inflation .03 -.22 .03 -.22 .02 -.27 -.25

(.06) (.08) (.06) (.09) (.06) (.09) (.06)

Productivity growth .22 -.11 .22 -.10 .26 -.16 .10

(.08) (.11) (.08) (.11) (.08) (.11) (.07)

Note: Coefficients for the intercept are estimates of α0 and β0 in equation

(2). Union density coefficients have been multiplied by 10. The nonconstant error
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variance model also includes an informative prior θ. The change point of 1976 for

the OLS model is set by assumption.
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Figure 1. The top panel shows 100-point times series for the artificial data,

x and y, where a change in the relationship between the variable occurs at time

point, t = 37. The bottom panel is a scatterplot of x against y, with two regression

lines fitting the time points, t < 37 (hollow points), and t ≥ 37 (solid points).
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Figure 2. Time-series of R2 statistics, from regressions on artificial data for x

and y, θ = 10, 11, . . . , 90.
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Figure 3. Plot of R2 statistics for linear regressions on wage growth data, with

change points θ = 1966 . . . , 1990, 18 OECD countries 1966–1992.
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